Displaying 61 – 80 of 238

Showing per page

Embeddings of hamiltonian paths in faulty k-ary 2-cubes

Shiying Wang, Shurong Zhang (2012)

Discussiones Mathematicae Graph Theory

It is well known that the k-ary n-cube has been one of the most efficient interconnection networks for distributed-memory parallel systems. A k-ary n-cube is bipartite if and only if k is even. Let (X,Y) be a bipartition of a k-ary 2-cube (even integer k ≥ 4). In this paper, we prove that for any two healthy vertices u ∈ X, v ∈ Y, there exists a hamiltonian path from u to v in the faulty k-ary 2-cube with one faulty vertex in each part.

Equations relating factors in decompositions into factors of some family of plane triangulations, and applications (with an appendix by Andrzej Schinzel)

Jan Florek (2015)

Colloquium Mathematicae

Let be the family of all 2-connected plane triangulations with vertices of degree three or six. Grünbaum and Motzkin proved (in dual terms) that every graph P ∈ has a decomposition into factors P₀, P₁, P₂ (indexed by elements of the cyclic group Q = 0,1,2) such that every factor P q consists of two induced paths of the same length M(q), and K(q) - 1 induced cycles of the same length 2M(q). For q ∈ Q, we define an integer S⁺(q) such that the vector (K(q),M(q),S⁺(q)) determines the graph P (if P is...

Extension of several sufficient conditions for Hamiltonian graphs

Ahmed Ainouche (2006)

Discussiones Mathematicae Graph Theory

Let G be a 2-connected graph of order n. Suppose that for all 3-independent sets X in G, there exists a vertex u in X such that |N(X∖u)|+d(u) ≥ n-1. Using the concept of dual closure, we prove that 1. G is hamiltonian if and only if its 0-dual closure is either complete or the cycle C₇ 2. G is nonhamiltonian if and only if its 0-dual closure is either the graph ( K r K K ) K , 1 ≤ r ≤ s ≤ t or the graph ( ( n + 1 ) / 2 ) K K ( n - 1 ) / 2 . It follows that it takes a polynomial time to check the hamiltonicity or the nonhamiltonicity of a graph...

Extremal problems for forbidden pairs that imply hamiltonicity

Ralph Faudree, András Gyárfás (1999)

Discussiones Mathematicae Graph Theory

Let C denote the claw K 1 , 3 , N the net (a graph obtained from a K₃ by attaching a disjoint edge to each vertex of the K₃), W the wounded (a graph obtained from a K₃ by attaching an edge to one vertex and a disjoint path P₃ to a second vertex), and Z i the graph consisting of a K₃ with a path of length i attached to one vertex. For k a fixed positive integer and n a sufficiently large integer, the minimal number of edges and the smallest clique in a k-connected graph G of order n that is CY-free (does...

Forbidden Subgraphs for Hamiltonicity of 1-Tough Graphs

Binlong Li, Hajo J. Broersma, Shenggui Zhang (2016)

Discussiones Mathematicae Graph Theory

A graph G is said to be 1-tough if for every vertex cut S of G, the number of components of G − S does not exceed |S|. Being 1-tough is an obvious necessary condition for a graph to be hamiltonian, but it is not sufficient in general. We study the problem of characterizing all graphs H such that every 1-tough H-free graph is hamiltonian. We almost obtain a complete solution to this problem, leaving H = K1 ∪ P4 as the only open case.

Forbidden triples implying Hamiltonicity: for all graphs

Ralph J. Faudree, Ronald J. Gould, Michael S. Jacobson (2004)

Discussiones Mathematicae Graph Theory

In [2], Brousek characterizes all triples of graphs, G₁, G₂, G₃, with G i = K 1 , 3 for some i = 1, 2, or 3, such that all G₁G₂G₃-free graphs contain a hamiltonian cycle. In [6], Faudree, Gould, Jacobson and Lesniak consider the problem of finding triples of graphs G₁, G₂, G₃, none of which is a K 1 , s , s ≥ 3 such that G₁, G₂, G₃-free graphs of sufficiently large order contain a hamiltonian cycle. In this paper, a characterization will be given of all triples G₁, G₂, G₃ with none being K 1 , 3 , such that all G₁G₂G₃-free...

From L. Euler to D. König

Dominique de Werra (2009)

RAIRO - Operations Research

Starting from the famous Königsberg bridge problem which Euler described in 1736, we intend to show that some results obtained 180 years later by König are very close to Euler's discoveries.

Graphs S ( n , k ) and a variant of the Tower of Hanoi problem

Sandi Klavžar, Uroš Milutinović (1997)

Czechoslovak Mathematical Journal

For any n 1 and any k 1 , a graph S ( n , k ) is introduced. Vertices of S ( n , k ) are n -tuples over { 1 , 2 , ... , k } and two n -tuples are adjacent if they are in a certain relation. These graphs are graphs of a particular variant of the Tower of Hanoi problem. Namely, the graphs S ( n , 3 ) are isomorphic to the graphs of the Tower of Hanoi problem. It is proved that there are at most two shortest paths between any two vertices of S ( n , k ) . Together with a formula for the distance, this result is used to compute the distance between two vertices in...

Currently displaying 61 – 80 of 238