Hadamard matrices and strongly regular graphs with the 3-e. c. adjacency property.
Let be homogeneous trees with degrees , respectively. For each tree, let be the Busemann function with respect to a fixed boundary point (end). Its level sets are the horocycles. The horocyclic product of is the graph consisting of all -tuples with , equipped with a natural neighbourhood relation. In the present paper, we explore the geometric, algebraic, analytic and probabilistic properties of these graphs and their isometry groups. If and then we obtain a Cayley graph of the...