Page 1 Next

Displaying 1 – 20 of 37

Showing per page

Centrosymmetric Graphs And A Lower Bound For Graph Energy Of Fullerenes

Gyula Y. Katona, Morteza Faghani, Ali Reza Ashrafi (2014)

Discussiones Mathematicae Graph Theory

The energy of a molecular graph G is defined as the summation of the absolute values of the eigenvalues of adjacency matrix of a graph G. In this paper, an infinite class of fullerene graphs with 10n vertices, n ≥ 2, is considered. By proving centrosymmetricity of the adjacency matrix of these fullerene graphs, a lower bound for its energy is given. Our method is general and can be extended to other class of fullerene graphs.

Certain new M-matrices and their properties with applications

Ratnakaram N. Mohan, Sanpei Kageyama, Moon H. Lee, G. Yang (2008)

Discussiones Mathematicae Probability and Statistics

The Mₙ-matrix was defined by Mohan [21] who has shown a method of constructing (1,-1)-matrices and studied some of their properties. The (1,-1)-matrices were constructed and studied by Cohn [6], Ehrlich [9], Ehrlich and Zeller [10], and Wang [34]. But in this paper, while giving some resemblances of this matrix with a Hadamard matrix, and by naming it as an M-matrix, we show how to construct partially balanced incomplete block designs and some regular graphs by it. Two types of these M-matrices...

Characterization of semientire graphs with crossing number 2

D. G. Akka, J. K. Bano (2002)

Mathematica Bohemica

The purpose of this paper is to give characterizations of graphs whose vertex-semientire graphs and edge-semientire graphs have crossing number 2. In addition, we establish necessary and sufficient conditions in terms of forbidden subgraphs for vertex-semientire graphs and edge-semientire graphs to have crossing number 2.

Characterizations of the Family of All Generalized Line Graphs-Finite and Infinite-and Classification of the Family of All Graphs Whose Least Eigenvalues ≥ −2

Gurusamy Rengasamy Vijayakumar (2013)

Discussiones Mathematicae Graph Theory

The infimum of the least eigenvalues of all finite induced subgraphs of an infinite graph is defined to be its least eigenvalue. In [P.J. Cameron, J.M. Goethals, J.J. Seidel and E.E. Shult, Line graphs, root systems, and elliptic geometry, J. Algebra 43 (1976) 305-327], the class of all finite graphs whose least eigenvalues ≥ −2 has been classified: (1) If a (finite) graph is connected and its least eigenvalue is at least −2, then either it is a generalized line graph or it is represented by the...

Cheeger inequalities for unbounded graph Laplacians

Frank Bauer, Matthias Keller, Radosław K. Wojciechowski (2015)

Journal of the European Mathematical Society

We use the concept of intrinsic metrics to give a new definition for an isoperimetric constant of a graph. We use this novel isoperimetric constant to prove a Cheeger-type estimate for the bottom of the spectrum which is nontrivial even if the vertex degrees are unbounded.

Coalescing Fiedler and core vertices

Didar A. Ali, John Baptist Gauci, Irene Sciriha, Khidir R. Sharaf (2016)

Czechoslovak Mathematical Journal

The nullity of a graph G is the multiplicity of zero as an eigenvalue in the spectrum of its adjacency matrix. From the interlacing theorem, derived from Cauchy’s inequalities for matrices, a vertex of a graph can be a core vertex if, on deleting the vertex, the nullity decreases, or a Fiedler vertex, otherwise. We adopt a graph theoretical approach to determine conditions required for the identification of a pair of prescribed types of root vertices of two graphs to form a cut-vertex of unique...

Codes and designs from triangular graphs and their line graphs

Washiela Fish, Khumbo Kumwenda, Eric Mwambene (2011)

Open Mathematics

For any prime p, we consider p-ary linear codes obtained from the span over 𝔽 p p of rows of incidence matrices of triangular graphs, differences of the rows and adjacency matrices of line graphs of triangular graphs. We determine parameters of the codes, minimum words and automorphism groups. We also show that the codes can be used for full permutation decoding.

Color Energy Of A Unitary Cayley Graph

Chandrashekar Adiga, E. Sampathkumar, M.A. Sriraj (2014)

Discussiones Mathematicae Graph Theory

Let G be a vertex colored graph. The minimum number χ(G) of colors needed for coloring of a graph G is called the chromatic number. Recently, Adiga et al. [1] have introduced the concept of color energy of a graph Ec(G) and computed the color energy of few families of graphs with χ(G) colors. In this paper we derive explicit formulas for the color energies of the unitary Cayley graph Xn, the complement of the colored unitary Cayley graph (Xn)c and some gcd-graphs.

Currently displaying 1 – 20 of 37

Page 1 Next