Page 1

Displaying 1 – 13 of 13

Showing per page

Partial sum of eigenvalues of random graphs

Israel Rocha (2020)

Applications of Mathematics

Let G be a graph on n vertices and let λ 1 λ 2 ... λ n be the eigenvalues of its adjacency matrix. For random graphs we investigate the sum of eigenvalues s k = i = 1 k λ i , for 1 k n , and show that a typical graph has s k ( e ( G ) + k 2 ) / ( 0 . 99 n ) 1 / 2 , where e ( G ) is the number of edges of G . We also show bounds for the sum of eigenvalues within a given range in terms of the number of edges. The approach for the proofs was first used in Rocha (2020) to bound the partial sum of eigenvalues of the Laplacian matrix.

Pentadiagonal Companion Matrices

Brydon Eastman, Kevin N. Vander Meulen (2016)

Special Matrices

The class of sparse companion matrices was recently characterized in terms of unit Hessenberg matrices. We determine which sparse companion matrices have the lowest bandwidth, that is, we characterize which sparse companion matrices are permutationally similar to a pentadiagonal matrix and describe how to find the permutation involved. In the process, we determine which of the Fiedler companion matrices are permutationally similar to a pentadiagonal matrix. We also describe how to find a Fiedler...

Periodic graphs.

Godsil, Chris (2011)

The Electronic Journal of Combinatorics [electronic only]

Porous media equation on locally finite graphs

Li Ma (2022)

Archivum Mathematicum

In this paper, we consider two typical problems on a locally finite connected graph. The first one is to study the Bochner formula for the Laplacian operator on a locally finite connected graph. The other one is to obtain global nontrivial nonnegative solution to porous-media equation via the use of Aronson-Benilan argument. We use the curvature dimension condition to give a characterization two point graph. We also give a porous-media equation criterion about stochastic completeness of the graph....

Positive Q-matrices of graphs

Nobuaki Obata (2007)

Studia Mathematica

The Q-matrix of a connected graph = (V,E) is Q = ( q ( x , y ) ) x , y V , where ∂(x,y) is the graph distance. Let q() be the range of q ∈ (-1,1) for which the Q-matrix is strictly positive. We obtain a sufficient condition for the equality q(̃) = q() where ̃ is an extension of a finite graph by joining a square. Some concrete examples are discussed.

Power indices of trace zero symmetric Boolean matrices

Bo Zhou (2004)

Discussiones Mathematicae - General Algebra and Applications

The power index of a square Boolean matrix A is the least integer d such that Ad is a linear combination of previous nonnegative powers of A. We determine the maximum power indices for the class of n×n primitive symmetric Boolean matrices of trace zero, the class of n×n irreducible nonprimitive symmetric Boolean matrices, and the class of n×n reducible symmetric Boolean matrices of trace zero, and characterize the extreme matrices respectively.

Currently displaying 1 – 13 of 13

Page 1