Page 1

Displaying 1 – 11 of 11

Showing per page

Déterminants et intégrales de Fresnel

Yves Colin de Verdière (1999)

Annales de l'institut Fourier

On présente ici une approche directe et géométrique pour le calcul des déterminants d’opérateurs de type Schrödinger sur un graphe fini. Du calcul de l’intégrale de Fresnel associée, on déduit le déterminant. Le calcul des intégrales de Fresnel est grandement facilité par l’utilisation simultanée du théorème de Fubini et d’une version linéaire du calcul symbolique des opérateurs intégraux de Fourier. On obtient de façon directe une formule générale exprimant le déterminant en terme des conditions...

Discrepancy and eigenvalues of Cayley graphs

Yoshiharu Kohayakawa, Vojtěch Rödl, Mathias Schacht (2016)

Czechoslovak Mathematical Journal

We consider quasirandom properties for Cayley graphs of finite abelian groups. We show that having uniform edge-distribution (i.e., small discrepancy) and having large eigenvalue gap are equivalent properties for such Cayley graphs, even if they are sparse. This affirmatively answers a question of Chung and Graham (2002) for the particular case of Cayley graphs of abelian groups, while in general the answer is negative.

Distance matrices perturbed by Laplacians

Balaji Ramamurthy, Ravindra Bhalchandra Bapat, Shivani Goel (2020)

Applications of Mathematics

Let T be a tree with n vertices. To each edge of T we assign a weight which is a positive definite matrix of some fixed order, say, s . Let D i j denote the sum of all the weights lying in the path connecting the vertices i and j of T . We now say that D i j is the distance between i and j . Define D : = [ D i j ] , where D i i is the s × s null matrix and for i j , D i j is the distance between i and j . Let G be an arbitrary connected weighted graph with n vertices, where each weight is a positive definite matrix of order s . If i and...

Distances on the tropical line determined by two points

María Jesús de la Puente (2014)

Kybernetika

Let p ' and q ' be points in n . Write p ' q ' if p ' - q ' is a multiple of ( 1 , ... , 1 ) . Two different points p and q in n / uniquely determine a tropical line L ( p , q ) passing through them and stable under small perturbations. This line is a balanced unrooted semi-labeled tree on n leaves. It is also a metric graph. If some representatives p ' and q ' of p and q are the first and second columns of some real normal idempotent order n matrix A , we prove that the tree L ( p , q ) is described by a matrix F , easily obtained from A . We also prove that...

Currently displaying 1 – 11 of 11

Page 1