Tetracyclic harmonic graphs
We take as given a real symmetric matrix A, whose graph is a tree T, and the eigenvalues of A, with their multiplicities. Each edge of T may then be classified in one of four categories, based upon the change in multiplicity of a particular eigenvalue, when the edge is removed (i.e. the corresponding entry of A is replaced by 0).We show a necessary and suficient condition for each possible classification of an edge. A special relationship is observed among 2-Parter edges, Parter edges and singly...
A digraph is associated with a finite group by utilizing the power map defined by for all , where is a fixed natural number. It is denoted by . In this paper, the generalized quaternion and -groups are studied. The height structure is discussed for the generalized quaternion. The necessary and sufficient conditions on a power digraph of a -group are determined for a -group to be a generalized quaternion group. Further, the classification of two generated -groups as abelian or non-abelian...
Given a graph , if there is no nonisomorphic graph such that and have the same signless Laplacian spectra, then we say that is -DS. In this paper we show that every fan graph is -DS, where and .
In this paper, we have investigated some properties of the first Dirichlet eigenvalue of a bicyclic graph with boundary condition. These results can be used to characterize the extremal bicyclic graphs with the smallest first Dirichlet eigenvalue among all the bicyclic graphs with a given graphic bicyclic degree sequence with minor conditions. Moreover, the extremal bicyclic graphs with the smallest first Dirichlet eigenvalue among all the bicycle graphs with fixed interior vertices of degree...
Let G be a graph with n vertices and ν(G) be the matching number of G. The inertia of a graph G, In(G) = (n₊,n₋,n₀) is an integer triple specifying the numbers of positive, negative and zero eigenvalues of the adjacency matrix A(G), respectively. Let η(G) = n₀ denote the nullity of G (the multiplicity of the eigenvalue zero of G). It is well known that if G is a tree, then η(G) = n - 2ν(G). Guo et al. [Ji-Ming Guo, Weigen Yan and Yeong-Nan Yeh. On the nullity and the matching number of unicyclic...
The Laplacian spectral radius of a graph is the largest eigenvalue of the associated Laplacian matrix. In this paper, we improve Shi's upper bound for the Laplacian spectral radius of irregular graphs and present some new bounds for the Laplacian spectral radius of some classes of graphs.