The minimum spectral radius of graphs with a given clique number.
Let be a commutative ring with unity and be the set of unit elements of . In this paper, we introduce and investigate some properties of a new kind of graph on the ring , namely, the prime ideals intersection graph of , denoted by . The is a graph with vertex set and two distinct vertices and are adjacent if and only if there exists a prime ideal of such that . We obtain necessary and sufficient conditions on such that is disconnected. We find the diameter and girth of ....
For a positive integer k, a total k-dominating function of a digraph D is a function f from the vertex set V(D) to the set 0,1,2, ...,k such that for any vertex v ∈ V(D), the condition is fulfilled, where N¯(v) consists of all vertices of D from which arcs go into v. A set of total k-dominating functions of D with the property that for each v ∈ V(D), is called a total k-dominating family (of functions) on D. The maximum number of functions in a total k-dominating family on D is the total k-domatic...
We discuss how to find the well-covered dimension of a graph that is the Cartesian product of paths, cycles, complete graphs, and other simple graphs. Also, a bound for the well-covered dimension of Kn × G is found, provided that G has a largest greedy independent decomposition of length c < n. Formulae to find the well-covered dimension of graphs obtained by vertex blowups on a known graph, and to the lexicographic product of two known graphs are also given.
Denote the total domination number of a graph G by γₜ(G). A graph G is said to be total domination edge critical, or simply γₜ-critical, if γₜ(G+e) < γₜ(G) for each edge e ∈ E(G̅). For 3ₜ-critical graphs G, that is, γₜ-critical graphs with γₜ(G) = 3, the diameter of G is either 2 or 3. We characterise the 3ₜ-critical graphs G with diam G = 3.
Several of the best known problems and conjectures in graph theory arise in studying the behavior of a graphical invariant on a graph product. Examples of this are Vizing's conjecture, Hedetniemi's conjecture and the calculation of the Shannon capacity of graphs, where the invariants are the domination number, the chromatic number and the independence number on the Cartesian, categorical and strong product, respectively. In this paper we begin an investigation of the total domination number on the...
The domination multisubdivision number of a nonempty graph G was defined in [3] as the minimum positive integer k such that there exists an edge which must be subdivided k times to increase the domination number of G. Similarly we define the total domination multisubdivision number msdγt (G) of a graph G and we show that for any connected graph G of order at least two, msdγt (G) ≤ 3. We show that for trees the total domination multisubdi- vision number is equal to the known total domination subdivision...
Let γₜ(G) and denote the total domination and the paired domination numbers of graph G, respectively, and let G □ H denote the Cartesian product of graphs G and H. In this paper, we show that γₜ(G)γₜ(H) ≤ 5γₜ(G □ H), which improves the known result γₜ(G)γₜ(H) ≤ 6γₜ(G □ H) given by Henning and Rall.
A set S of vertices in a graph G = (V,E) is a total dominating set of G if every vertex of V is adjacent to a vertex in S. The total domination number of G is the minimum cardinality of a total dominating set of G. The total domination subdivision number of G is the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the total domination number. First we establish bounds on the total domination subdivision number for some families...
A dominating set of a graph G is a vertex subset that any vertex of G either belongs to or is adjacent to. A total dominating set is a dominating set whose induced subgraph does not contain isolated vertices. The minimal size of a total dominating set, the total domination number, is denoted by γₜ. The maximal size of an inclusionwise minimal total dominating set, the upper total domination number, is denoted by Γₜ. A paired dominating set is a dominating set whose induced subgraph has a perfect...
Let G = (V,E) be a graph. Set D ⊆ V(G) is a total outer-connected dominating set of G if D is a total dominating set in G and G[V(G)-D] is connected. The total outer-connected domination number of G, denoted by , is the smallest cardinality of a total outer-connected dominating set of G. We show that if T is a tree of order n, then . Moreover, we constructively characterize the family of extremal trees T of order n achieving this lower bound.
Let G = (V,E) be a graph. A subset S of V is a 2-dominating set if every vertex of V-S is dominated at least 2 times, and S is a 2-independent set of G if every vertex of S has at most one neighbor in S. The minimum cardinality of a 2-dominating set a of G is the 2-domination number γ₂(G) and the maximum cardinality of a 2-independent set of G is the 2-independence number β₂(G). Fink and Jacobson proved that γ₂(G) ≤ β₂(G) for every graph G. In this paper we provide a constructive characterization...
For a graph G = (V,E), a set D ⊆ V(G) is a total restrained dominating set if it is a dominating set and both ⟨D⟩ and ⟨V(G)-D⟩ do not have isolated vertices. The cardinality of a minimum total restrained dominating set in G is the total restrained domination number. A set D ⊆ V(G) is a restrained dominating set if it is a dominating set and ⟨V(G)-D⟩ does not contain an isolated vertex. The cardinality of a minimum restrained dominating set in G is the restrained domination number. We characterize...
For a graph G = (V,E), a set S ⊆ V(G) is a total dominating set if it is dominating and both ⟨S⟩ has no isolated vertices. The cardinality of a minimum total dominating set in G is the total domination number. A set S ⊆ V(G) is a total restrained dominating set if it is total dominating and ⟨V(G)-S⟩ has no isolated vertices. The cardinality of a minimum total restrained dominating set in G is the total restrained domination number. We characterize all trees for which total domination and total restrained...