Degree distribution nearby the origin of a preferential attachment graph.
We consider quasirandom properties for Cayley graphs of finite abelian groups. We show that having uniform edge-distribution (i.e., small discrepancy) and having large eigenvalue gap are equivalent properties for such Cayley graphs, even if they are sparse. This affirmatively answers a question of Chung and Graham (2002) for the particular case of Cayley graphs of abelian groups, while in general the answer is negative.
We analyze a stochastic neuronal network model which corresponds to an all-to-all network of discretized integrate-and-fire neurons where the synapses are failure-prone. This network exhibits different phases of behavior corresponding to synchrony and asynchrony, and we show that this is due to the limiting mean-field system possessing multiple attractors. We also show that this mean-field limit exhibits a first-order phase transition as a function...
In this paper, we rule out the possibility that a certain method of proof in the sums differences conjecture can settle the Kakeya Conjecture.
We formulate and prove a formula to compute the expected value of the minimal random basis of an arbitrary finite matroid whose elements are assigned weights which are independent and uniformly distributed on the interval [0, 1]. This method yields an exact formula in terms of the Tutte polynomial. We give a simple formula to find the minimal random basis of the projective geometry PG(r − 1, q).