The search session has expired. Please query the service again.

Displaying 381 – 400 of 908

Showing per page

On monochromatic paths and bicolored subdigraphs in arc-colored tournaments

Pietra Delgado-Escalante, Hortensia Galeana-Sánchez (2011)

Discussiones Mathematicae Graph Theory

Consider an arc-colored digraph. A set of vertices N is a kernel by monochromatic paths if all pairs of distinct vertices of N have no monochromatic directed path between them and if for every vertex v not in N there exists n ∈ N such that there is a monochromatic directed path from v to n. In this paper we prove different sufficient conditions which imply that an arc-colored tournament has a kernel by monochromatic paths. Our conditions concerns to some subdigraphs of T and its quasimonochromatic...

On Monochromatic Subgraphs of Edge-Colored Complete Graphs

Eric Andrews, Futaba Fujie, Kyle Kolasinski, Chira Lumduanhom, Adam Yusko (2014)

Discussiones Mathematicae Graph Theory

In a red-blue coloring of a nonempty graph, every edge is colored red or blue. If the resulting edge-colored graph contains a nonempty subgraph G without isolated vertices every edge of which is colored the same, then G is said to be monochromatic. For two nonempty graphs G and H without isolated vertices, the mono- chromatic Ramsey number mr(G,H) of G and H is the minimum integer n such that every red-blue coloring of Kn results in a monochromatic G or a monochromatic H. Thus, the standard Ramsey...

On multiset colorings of generalized corona graphs

Yun Feng, Wensong Lin (2016)

Mathematica Bohemica

A vertex k -coloring of a graph G is a multiset k -coloring if M ( u ) M ( v ) for every edge u v E ( G ) , where M ( u ) and M ( v ) denote the multisets of colors of the neighbors of u and v , respectively. The minimum k for which G has a multiset k -coloring is the multiset chromatic number χ m ( G ) of G . For an integer 0 , the -corona of a graph G , cor ( G ) , is the graph obtained from G by adding, for each vertex v in G , new neighbors which are end-vertices. In this paper, the multiset chromatic numbers are determined for -coronas of all complete...

On multiset colorings of graphs

Futaba Okamoto, Ebrahim Salehi, Ping Zhang (2010)

Discussiones Mathematicae Graph Theory

A vertex coloring of a graph G is a multiset coloring if the multisets of colors of the neighbors of every two adjacent vertices are different. The minimum k for which G has a multiset k-coloring is the multiset chromatic number χₘ(G) of G. For every graph G, χₘ(G) is bounded above by its chromatic number χ(G). The multiset chromatic numbers of regular graphs are investigated. It is shown that for every pair k, r of integers with 2 ≤ k ≤ r - 1, there exists an r-regular graph with multiset chromatic...

On non-z(mod k) dominating sets

Yair Caro, Michael S. Jacobson (2003)

Discussiones Mathematicae Graph Theory

For a graph G, a positive integer k, k ≥ 2, and a non-negative integer with z < k and z ≠ 1, a subset D of the vertex set V(G) is said to be a non-z (mod k) dominating set if D is a dominating set and for all x ∈ V(G), |N[x]∩D| ≢ z (mod k).For the case k = 2 and z = 0, it has been shown that these sets exist for all graphs. The problem for k ≥ 3 is unknown (the existence for even values of k and z = 0 follows from the k = 2 case.) It is the purpose of this paper to show that for k ≥ 3 and with...

On normal partitions in cubic graphs

Jean-Luc Fouquet, Jean-Marie Vanherpe (2009)

Discussiones Mathematicae Graph Theory

A normal partition of the edges of a cubic graph is a partition into trails (no repeated edge) such that each vertex is the end vertex of exactly one trail of the partition. We investigate this notion and give some results and problems.

On odd and semi-odd linear partitions of cubic graphs

Jean-Luc Fouquet, Henri Thuillier, Jean-Marie Vanherpe, Adam P. Wojda (2009)

Discussiones Mathematicae Graph Theory

A linear forest is a graph whose connected components are chordless paths. A linear partition of a graph G is a partition of its edge set into linear forests and la(G) is the minimum number of linear forests in a linear partition. In this paper we consider linear partitions of cubic simple graphs for which it is well known that la(G) = 2. A linear partition L = ( L B , L R ) is said to be odd whenever each path of L B L R has odd length and semi-odd whenever each path of L B (or each path of L R ) has odd length. In [2] Aldred...

On (p, 1)-total labelling of 1-planar graphs

Xin Zhang, Yong Yu, Guizhen Liu (2011)

Open Mathematics

A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. In this paper, it is proved that the (p, 1)-total labelling number of every 1-planar graph G is at most Δ(G) + 2p − 2 provided that Δ(G) ≥ 8p+4 or Δ(G) ≥ 6p+2 and g(G) ≥ 4. As a consequence, the well-known (p, 1)-total labelling conjecture has been confirmed for some 1-planar graphs.

Currently displaying 381 – 400 of 908