Displaying 461 – 480 of 561

Showing per page

Topological dynamics of unordered Ramsey structures

Moritz Müller, András Pongrácz (2015)

Fundamenta Mathematicae

We investigate the connections between Ramsey properties of Fraïssé classes and the universal minimal flow M ( G ) of the automorphism group G of their Fraïssé limits. As an extension of a result of Kechris, Pestov and Todorcevic (2005) we show that if the class has finite Ramsey degree for embeddings, then this degree equals the size of M ( G ) . We give a partial answer to a question of Angel, Kechris and Lyons (2014) showing that if is a relational Ramsey class and G is amenable, then M ( G ) admits a unique invariant...

Torsion in graph homology

Laure Helme-Guizon, Józef H. Przytycki, Yongwu Rong (2006)

Fundamenta Mathematicae

Khovanov homology for knots has generated a flurry of activity in the topology community. This paper studies the Khovanov type cohomology for graphs with a special attention to torsion. When the underlying algebra is ℤ[x]/(x²), we determine precisely those graphs whose cohomology contains torsion. For a large class of algebras, we show that torsion often occurs. Our investigation of torsion led to other related general results. Our computation could potentially be used to predict the Khovanov-Rozansky...

Total domination edge critical graphs with maximum diameter

Lucas C. van der Merwe, Cristine M. Mynhardt, Teresa W. Haynes (2001)

Discussiones Mathematicae Graph Theory

Denote the total domination number of a graph G by γₜ(G). A graph G is said to be total domination edge critical, or simply γₜ-critical, if γₜ(G+e) < γₜ(G) for each edge e ∈ E(G̅). For 3ₜ-critical graphs G, that is, γₜ-critical graphs with γₜ(G) = 3, the diameter of G is either 2 or 3. We characterise the 3ₜ-critical graphs G with diam G = 3.

Total domination in categorical products of graphs

Douglas F. Rall (2005)

Discussiones Mathematicae Graph Theory

Several of the best known problems and conjectures in graph theory arise in studying the behavior of a graphical invariant on a graph product. Examples of this are Vizing's conjecture, Hedetniemi's conjecture and the calculation of the Shannon capacity of graphs, where the invariants are the domination number, the chromatic number and the independence number on the Cartesian, categorical and strong product, respectively. In this paper we begin an investigation of the total domination number on the...

Total Domination Multisubdivision Number of a Graph

Diana Avella-Alaminos, Magda Dettlaff, Magdalena Lemańska, Rita Zuazua (2015)

Discussiones Mathematicae Graph Theory

The domination multisubdivision number of a nonempty graph G was defined in [3] as the minimum positive integer k such that there exists an edge which must be subdivided k times to increase the domination number of G. Similarly we define the total domination multisubdivision number msdγt (G) of a graph G and we show that for any connected graph G of order at least two, msdγt (G) ≤ 3. We show that for trees the total domination multisubdi- vision number is equal to the known total domination subdivision...

Total domination of Cartesian products of graphs

Xinmin Hou (2007)

Discussiones Mathematicae Graph Theory

Let γₜ(G) and γ p r ( G ) denote the total domination and the paired domination numbers of graph G, respectively, and let G □ H denote the Cartesian product of graphs G and H. In this paper, we show that γₜ(G)γₜ(H) ≤ 5γₜ(G □ H), which improves the known result γₜ(G)γₜ(H) ≤ 6γₜ(G □ H) given by Henning and Rall.

Total domination subdivision numbers of graphs

Teresa W. Haynes, Michael A. Henning, Lora S. Hopkins (2004)

Discussiones Mathematicae Graph Theory

A set S of vertices in a graph G = (V,E) is a total dominating set of G if every vertex of V is adjacent to a vertex in S. The total domination number of G is the minimum cardinality of a total dominating set of G. The total domination subdivision number of G is the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the total domination number. First we establish bounds on the total domination subdivision number for some families...

Total domination versus paired domination

Oliver Schaudt (2012)

Discussiones Mathematicae Graph Theory

A dominating set of a graph G is a vertex subset that any vertex of G either belongs to or is adjacent to. A total dominating set is a dominating set whose induced subgraph does not contain isolated vertices. The minimal size of a total dominating set, the total domination number, is denoted by γₜ. The maximal size of an inclusionwise minimal total dominating set, the upper total domination number, is denoted by Γₜ. A paired dominating set is a dominating set whose induced subgraph has a perfect...

Total edge irregularity strength of trees

Jaroslav Ivančo, Stanislav Jendrol' (2006)

Discussiones Mathematicae Graph Theory

A total edge-irregular k-labelling ξ:V(G)∪ E(G) → {1,2,...,k} of a graph G is a labelling of vertices and edges of G in such a way that for any different edges e and f their weights wt(e) and wt(f) are distinct. The weight wt(e) of an edge e = xy is the sum of the labels of vertices x and y and the label of the edge e. The minimum k for which a graph G has a total edge-irregular k-labelling is called the total edge irregularity strength of G, tes(G). In this paper we prove that for every...

Total edge-domatic number of a graph

Bohdan Zelinka (1991)

Mathematica Bohemica

The total edge-domatic number of a graph is introduced as an edge analogue of the total domatic number. Its values are studied for some special classes of graphs. The concept of totally edge-domatically full graph is introduced and investigated.

Total outer-connected domination in trees

Joanna Cyman (2010)

Discussiones Mathematicae Graph Theory

Let G = (V,E) be a graph. Set D ⊆ V(G) is a total outer-connected dominating set of G if D is a total dominating set in G and G[V(G)-D] is connected. The total outer-connected domination number of G, denoted by γ t c ( G ) , is the smallest cardinality of a total outer-connected dominating set of G. We show that if T is a tree of order n, then γ t c ( T ) 2 n / 3 . Moreover, we constructively characterize the family of extremal trees T of order n achieving this lower bound.

Total vertex irregularity strength of disjoint union of Helm graphs

Ali Ahmad, E.T. Baskoro, M. Imran (2012)

Discussiones Mathematicae Graph Theory

A total vertex irregular k-labeling φ of a graph G is a labeling of the vertices and edges of G with labels from the set {1,2,...,k} in such a way that for any two different vertices x and y their weights wt(x) and wt(y) are distinct. Here, the weight of a vertex x in G is the sum of the label of x and the labels of all edges incident with the vertex x. The minimum k for which the graph G has a vertex irregular total k-labeling is called the total vertex irregularity strength of G. We have determined...

Currently displaying 461 – 480 of 561