Displaying 481 – 500 of 561

Showing per page

Tournois et ordres médians pour une opinion

B. Monjardet (1973)

Mathématiques et Sciences Humaines

Dans cet article on étudie les propriétés d’ordres totaux à distance minimum d’un ensemble de tournois ; on montre, par exemple, que ces ordres contiennent l’ordre d’unanimité. On étudie la fonction f ( n , v ) maximum de la distance entre un ordre total et v tournois définis sur un ensemble à n éléments ; on donne sa valeur exacte pour v pair, un encadrement pour v impair, et sa valeur limite pour v tendant vers l’infini.

Towards a characterization of bipartite switching classes by means of forbidden subgraphs

Jurriaan Hage, Tero Harju (2007)

Discussiones Mathematicae Graph Theory

We investigate which switching classes do not contain a bipartite graph. Our final aim is a characterization by means of a set of critically non-bipartite graphs: they do not have a bipartite switch, but every induced proper subgraph does. In addition to the odd cycles, we list a number of exceptional cases and prove that these are indeed critically non-bipartite. Finally, we give a number of structural results towards proving the fact that we have indeed found them all. The search for critically...

Towards a geometric theory for left loops

Karla Baez (2014)

Commentationes Mathematicae Universitatis Carolinae

In [Mwambene E., Multiples of left loops and vertex-transitive graphs, Cent. Eur. J. Math. 3 (2005), no. 2, 254–250] it was proved that every vertex-transitive graph is the Cayley graph of a left loop with respect to a quasi-associative Cayley set. We use this result to show that Cayley graphs of left loops with respect to such sets have some properties in common with Cayley graphs of groups which can be used to study a geometric theory for left loops in analogy to that for groups.

TPM: Transition probability matrix - Graph structural feature based embedding

Sarmad N. Mohammed, Semra Gündüç (2023)

Kybernetika

In this work, Transition Probability Matrix (TPM) is proposed as a new method for extracting the features of nodes in the graph. The proposed method uses random walks to capture the connectivity structure of a node's close neighborhood. The information obtained from random walks is converted to anonymous walks to extract the topological features of nodes. In the embedding process of nodes, anonymous walks are used since they capture the topological similarities of connectivities better than random...

Traceability in { K 1 , 4 , K 1 , 4 + e } -free graphs

Wei Zheng, Ligong Wang (2019)

Czechoslovak Mathematical Journal

A graph G is called { H 1 , H 2 , , H k } -free if G contains no induced subgraph isomorphic to any graph H i , 1 i k . We define σ k = min i = 1 k d ( v i ) : { v 1 , , v k } is an independent set of vertices in G . In this paper, we prove that (1) if G is a connected { K 1 , 4 , K 1 , 4 + e } -free graph of order n and σ 3 ( G ) n - 1 , then G is traceable, (2) if G is a 2-connected { K 1 , 4 , K 1 , 4 + e } -free graph of order n and | N ( x 1 ) N ( x 2 ) | + | N ( y 1 ) N ( y 2 ) | n - 1 for any two distinct pairs of non-adjacent vertices { x 1 , x 2 } , { y 1 , y 2 } of G , then G is traceable, i.e., G has a Hamilton path, where K 1 , 4 + e is a graph obtained by joining a pair of non-adjacent vertices in a K 1 , 4 .

Transitions on a noncompact Cantor set and random walks on its defining tree

Jun Kigami (2013)

Annales de l'I.H.P. Probabilités et statistiques

First, noncompact Cantor sets along with their defining trees are introduced as a natural generalization of p -adic numbers. Secondly we construct a class of jump processes on a noncompact Cantor set from given pairs of eigenvalues and measures. At the same time, we have concrete expressions of the associated jump kernels and transition densities. Then we construct intrinsic metrics on noncompact Cantor set to obtain estimates of transition densities and jump kernels under some regularity conditions...

Currently displaying 481 – 500 of 561