The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 41 – 60 of 387

Showing per page

Characterization by intersection graph of some families of finite nonsimple groups

Hossein Shahsavari, Behrooz Khosravi (2021)

Czechoslovak Mathematical Journal

For a finite group G , Γ ( G ) , the intersection graph of G , is a simple graph whose vertices are all nontrivial proper subgroups of G and two distinct vertices H and K are adjacent when H K 1 . In this paper, we classify all finite nonsimple groups whose intersection graphs have a leaf and also we discuss the characterizability of them using their intersection graphs.

Characterization of 2 -minimally nonouterplanar join graphs

D. G. Akka, J. K. Bano (2001)

Mathematica Bohemica

In this paper, we present characterizations of pairs of graphs whose join graphs are 2-minimally nonouterplanar. In addition, we present a characterization of pairs of graphs whose join graphs are 2-minimally nonouterplanar in terms of forbidden subgraphs.

Characterization of block graphs with equal 2-domination number and domination number plus one

Adriana Hansberg, Lutz Volkmann (2007)

Discussiones Mathematicae Graph Theory

Let G be a simple graph, and let p be a positive integer. A subset D ⊆ V(G) is a p-dominating set of the graph G, if every vertex v ∈ V(G)-D is adjacent with at least p vertices of D. The p-domination number γₚ(G) is the minimum cardinality among the p-dominating sets of G. Note that the 1-domination number γ₁(G) is the usual domination number γ(G). If G is a nontrivial connected block graph, then we show that γ₂(G) ≥ γ(G)+1, and we characterize all connected block graphs with...

Characterization of Cubic Graphs G with ir t (G) = Ir t (G) = 2

Changiz Eslahchi, Shahab Haghi, Nader Jafari (2014)

Discussiones Mathematicae Graph Theory

A subset S of vertices in a graph G is called a total irredundant set if, for each vertex v in G, v or one of its neighbors has no neighbor in S −{v}. The total irredundance number, ir(G), is the minimum cardinality of a maximal total irredundant set of G, while the upper total irredundance number, IR(G), is the maximum cardinality of a such set. In this paper we characterize all cubic graphs G with irt(G) = IRt(G) = 2

Characterization of Line-Consistent Signed Graphs

Daniel C. Slilaty, Thomas Zaslavsky (2015)

Discussiones Mathematicae Graph Theory

The line graph of a graph with signed edges carries vertex signs. A vertex-signed graph is consistent if every circle (cycle, circuit) has positive vertex-sign product. Acharya, Acharya, and Sinha recently characterized line-consistent signed graphs, i.e., edge-signed graphs whose line graphs, with the naturally induced vertex signature, are consistent. Their proof applies Hoede’s relatively difficult characterization of consistent vertex-signed graphs. We give a simple proof that does not depend...

Characterization of n -vertex graphs with metric dimension n - 3

Mohsen Jannesari, Behnaz Omoomi (2014)

Mathematica Bohemica

For an ordered set W = { w 1 , w 2 , ... , w k } of vertices and a vertex v in a connected graph G , the ordered k -vector r ( v | W ) : = ( d ( v , w 1 ) , d ( v , w 2 ) , ... , d ( v , w k ) ) is called the metric representation of v with respect to W , where d ( x , y ) is the distance between vertices x and y . A set W is called a resolving set for G if distinct vertices of G have distinct representations with respect to W . The minimum cardinality of a resolving set for G is its metric dimension. In this paper, we characterize all graphs of order n with metric dimension n - 3 .

Characterization of power digraphs modulo n

Uzma Ahmad, Syed Husnine (2011)

Commentationes Mathematicae Universitatis Carolinae

A power digraph modulo n , denoted by G ( n , k ) , is a directed graph with Z n = { 0 , 1 , , n - 1 } as the set of vertices and E = { ( a , b ) : a k b ( mod n ) } as the edge set, where n and k are any positive integers. In this paper we find necessary and sufficient conditions on n and k such that the digraph G ( n , k ) has at least one isolated fixed point. We also establish necessary and sufficient conditions on n and k such that the digraph G ( n , k ) contains exactly two components. The primality of Fermat number is also discussed.

Characterization of semientire graphs with crossing number 2

D. G. Akka, J. K. Bano (2002)

Mathematica Bohemica

The purpose of this paper is to give characterizations of graphs whose vertex-semientire graphs and edge-semientire graphs have crossing number 2. In addition, we establish necessary and sufficient conditions in terms of forbidden subgraphs for vertex-semientire graphs and edge-semientire graphs to have crossing number 2.

Characterization Of Super-Radial Graphs

K.M. Kathiresan, G. Marimuthu, C. Parameswaran (2014)

Discussiones Mathematicae Graph Theory

In a graph G, the distance d(u, v) between a pair of vertices u and v is the length of a shortest path joining them. The eccentricity e(u) of a vertex u is the distance to a vertex farthest from u. The minimum eccentricity is called the radius, r(G), of the graph and the maximum eccentricity is called the diameter, d(G), of the graph. The super-radial graph R*(G) based on G has the vertex set as in G and two vertices u and v are adjacent in R*(G) if the distance between them in G is greater than...

Currently displaying 41 – 60 of 387