Displaying 61 – 80 of 390

Showing per page

Characterization of trees with equal 2-domination number and domination number plus two

Mustapha Chellali, Lutz Volkmann (2011)

Discussiones Mathematicae Graph Theory

Let G = (V(G),E(G)) be a simple graph, and let k be a positive integer. A subset D of V(G) is a k-dominating set if every vertex of V(G) - D is dominated at least k times by D. The k-domination number γₖ(G) is the minimum cardinality of a k-dominating set of G. In [5] Volkmann showed that for every nontrivial tree T, γ₂(T) ≥ γ₁(T)+1 and characterized extremal trees attaining this bound. In this paper we characterize all trees T with γ₂(T) = γ₁(T)+2.

Characterizations of Graphs Having Large Proper Connection Numbers

Chira Lumduanhom, Elliot Laforge, Ping Zhang (2016)

Discussiones Mathematicae Graph Theory

Let G be an edge-colored connected graph. A path P is a proper path in G if no two adjacent edges of P are colored the same. If P is a proper u − v path of length d(u, v), then P is a proper u − v geodesic. An edge coloring c is a proper-path coloring of a connected graph G if every pair u, v of distinct vertices of G are connected by a proper u − v path in G, and c is a strong proper-path coloring if every two vertices u and v are connected by a proper u− v geodesic in G. The minimum number of...

Characterizations of planar plick graphs

V.R. Kulli, B. Basavanagoud (2004)

Discussiones Mathematicae Graph Theory

In this paper we present characterizations of graphs whose plick graphs are planar, outerplanar and minimally nonouterplanar.

Characterizations of the Family of All Generalized Line Graphs-Finite and Infinite-and Classification of the Family of All Graphs Whose Least Eigenvalues ≥ −2

Gurusamy Rengasamy Vijayakumar (2013)

Discussiones Mathematicae Graph Theory

The infimum of the least eigenvalues of all finite induced subgraphs of an infinite graph is defined to be its least eigenvalue. In [P.J. Cameron, J.M. Goethals, J.J. Seidel and E.E. Shult, Line graphs, root systems, and elliptic geometry, J. Algebra 43 (1976) 305-327], the class of all finite graphs whose least eigenvalues ≥ −2 has been classified: (1) If a (finite) graph is connected and its least eigenvalue is at least −2, then either it is a generalized line graph or it is represented by the...

Characterizing Cartesian fixers and multipliers

Stephen Benecke, Christina M. Mynhardt (2012)

Discussiones Mathematicae Graph Theory

Let G ☐ H denote the Cartesian product of the graphs G and H. In 2004, Hartnell and Rall [On dominating the Cartesian product of a graph and K₂, Discuss. Math. Graph Theory 24(3) (2004), 389-402] characterized prism fixers, i.e., graphs G for which γ(G ☐ K₂) = γ(G), and noted that γ(G ☐ Kₙ) ≥ min{|V(G)|, γ(G)+n-2}. We call a graph G a consistent fixer if γ(G ☐ Kₙ) = γ(G)+n-2 for each n such that 2 ≤ n < |V(G)|- γ(G)+2, and characterize this class of graphs. Also in 2004, Burger,...

Characterizing finite groups whose enhanced power graphs have universal vertices

David G. Costanzo, Mark L. Lewis, Stefano Schmidt, Eyob Tsegaye, Gabe Udell (2024)

Czechoslovak Mathematical Journal

Let G be a finite group and construct a graph Δ ( G ) by taking G { 1 } as the vertex set of Δ ( G ) and by drawing an edge between two vertices x and y if x , y is cyclic. Let K ( G ) be the set consisting of the universal vertices of Δ ( G ) along the identity element. For a solvable group G , we present a necessary and sufficient condition for K ( G ) to be nontrivial. We also develop a connection between Δ ( G ) and K ( G ) when | G | is divisible by two distinct primes and the diameter of Δ ( G ) is 2.

Characterizing the interval function of a connected graph

Ladislav Nebeský (1998)

Mathematica Bohemica

As was shown in the book of Mulder [4], the interval function is an important tool for studying metric properties of connected graphs. An axiomatic characterization of the interval function of a connected graph was given by the present author in [5]. (Using the terminology of Bandelt, van de Vel and Verheul [1] and Bandelt and Chepoi [2], we may say that [5] gave a necessary and sufficient condition for a finite geometric interval space to be graphic). In the present paper, the result given in [5]...

Characterizing which Powers of Hypercubes and Folded Hyper- cubes Are Divisor Graphs

Eman A. AbuHijleh, Omar A. AbuGhneim, Hasan Al-Ezeh (2015)

Discussiones Mathematicae Graph Theory

In this paper, we show that Qkn is a divisor graph, for n = 2, 3. For n ≥ 4, we show that Qkn is a divisor graph iff k ≥ n − 1. For folded-hypercube, we get FQn is a divisor graph when n is odd. But, if n ≥ 4 is even integer, then FQn is not a divisor graph. For n ≥ 5, we show that (FQn)k is not a divisor graph, where 2 ≤ k ≤ [n/2] − 1.

Cheeger inequalities for unbounded graph Laplacians

Frank Bauer, Matthias Keller, Radosław K. Wojciechowski (2015)

Journal of the European Mathematical Society

We use the concept of intrinsic metrics to give a new definition for an isoperimetric constant of a graph. We use this novel isoperimetric constant to prove a Cheeger-type estimate for the bottom of the spectrum which is nontrivial even if the vertex degrees are unbounded.

Currently displaying 61 – 80 of 390