Derivations of MV-algebras.
The notion of bounded commutative residuated -monoid (-monoid, in short) generalizes both the notions of -algebra and of -algebra. Let be a -monoid; we denote by the underlying lattice of . In the present paper we show that each direct...
In this paper we deal with the relations between the direct product decompositions of a pseudo -algebra and the direct product decomposicitons of its underlying lattice.
In the present paper we deal with generalized -algebras (-algebras, in short) in the sense of Galatos and Tsinakis. According to a result of the mentioned authors, -algebras can be obtained by a truncation construction from lattice ordered groups. We investigate direct summands and retract mappings of -algebras. The relations between -algebras and lattice ordered groups are essential for this investigation.
It is well-known that every MV-algebra is a distributive lattice with respect to the induced order. Replacing this lattice by the so-called directoid (introduced by J. Ježek and R. Quackenbush) we obtain a weaker structure, the so-called skew MV-algebra. The paper is devoted to the axiomatization of skew MV-algebras, their properties and a description of the induced implication algebras.
We present a simple condition under which a bounded lattice L with sectionally antitone involutions becomes an MV-algebra. In thiscase, L is distributive. However, we get a criterion characterizingdistributivity of L in terms of antitone involutions only.
For a given cardinal number 𝔞, we construct a totally ordered MV-algebra M(𝔞) having the property that every totally ordered MV-algebra of cardinality at most 𝔞 embeds into M(𝔞). In case 𝔞 = ℵ₀, the algebra M(𝔞) is the first known MV-algebra with respect to which the deductive system for the infinitely-valued Łukasiewicz's propositional logic is strongly complete.
We study the entropy mainly on special effect algebras with (RDP), namely on tribes of fuzzy sets and sigma-complete MV-algebras. We generalize results from [RiMu] and [RiNe] which were known only for special tribes.
We define the entropy, lower and upper entropy, and the conditional entropy of a dynamical system consisting of an effect algebra with the Riesz decomposition property, a state, and a transformation. Such effect algebras allow many refinements of two partitions. We present the basic properties of these entropies and these notions are illustrated by many examples. Entropy on MV-algebras is postponed to Part II.
MV-algebras were introduced by Chang to prove the completeness of the infinite-valued Łukasiewicz propositional calculus. Recently, algebraic theory of MV-algebras has been intensively studied. Wajsberg algebras are just a reformulation of Chang MV-algebras where implication is used instead of disjunction. Using these equivalence, in this paper we provide conditions for the existence of an epimorphism between two finite MV-algebras and . Specifically, we define the mv-functions with domain in...
Following the study of sharp domination in effect algebras, in particular, in atomic Archimedean MV-effect algebras it is proved that if an atomic MV-effect algebra is uniformly Archimedean then it is sharply dominating.
Two categories and of fuzzy sets over an -algebra are investigated. Full subcategories of these categories are introduced consisting of objects , , where is a subset of all extensional subobjects of an object . It is proved that all these subcategories are quasi-reflective subcategories in the corresponding categories.
The notion of n-fold grisly deductive systems is introduced. Some conditions for a deductive system to be an n-fold grisly deductive system are provided. Extension property for n-fold grisly deductive system is established.
Does there exist an atomic Archimedean lattice effect algebra with non-atomic subalgebra of sharp elements? An affirmative answer to this question is given.
In this paper, we introduce the notion of fuzzy n-fold integral filter in BL-algebras and we state and prove several properties of fuzzy n-fold integral filters. Using a level subset of a fuzzy set in a BL-algebra, we give a characterization of fuzzy n-fold integral filters. Also, we prove that the homomorphic image and preimage of fuzzy n-fold integral filters are also fuzzy n-fold integral filters. Finally, we study the relationship among fuzzy n-fold obstinate filters, fuzzy n-fold integral filters...