Constructing an automorphic form from the orbit of a transformation.
Let be a -adic field. We give an explicit characterization of the abelian extensions of of degree by relating the coefficients of the generating polynomials of extensions of degree to the exponents of generators of the norm group . This is applied in an algorithm for the construction of class fields of degree , which yields an algorithm for the computation of class fields in general.
We examine a class of modular functions for whose values generate ring class fields of imaginary quadratic orders. This fact leads to a new algorithm for constructing elliptic curves with complex multiplication. The difficulties arising when the genus of is not zero are overcome by computing certain modular polynomials.Being a product of four -functions, the proposed modular functions can be viewed as a natural generalisation of the functions examined by Weber and usually employed to construct...
We construct a family of modular forms from harmonic Maass Jacobi forms by considering their Taylor expansion and using the method of holomorphic projection. As an application we present a certain type Hurwitz class relations which can be viewed as a generalization of Mertens' result in M. H. Mertens (2016).
Dans son article de 1971, essentiellement consacré aux extensions quaternioniennes de degré , J. Martinet prouve, au passage, l’existence de bases normales pour les entiers des extensions modérément ramifiées de de groupe . On en donne une construction en reprenant les méthodes de sa thèse.
On donne une caractérisation simple pour l’existence des bases normales pour les extensions modérément ramifiées à groupe de Galois quaternionien d’ordre . La preuve conduit à un algorithme que l’on illustre par un exemple.
Dans la lignée des travaux de V. Gritsenko et V. Nikulin, par des méthodes reliées aux formes de Jacobi définies relativement au réseau de racines on construit six formes automorphes réflectives qui seront associées à des algèbres de Kac–Moody hyperboliques de type de Borcherds, pour la signature et, pour quatre d’entre elles, on précisera une identité du type “formule du dénominateur”, déterminant entièrement l’algèbre en question.
Nous construisons, dans les corps quadratiques réels, une infinité de fractions continues périodiques uniformément bornées, avec une borne qui semble meilleure que celle connue jusqu’ici. Nous faisons cela en partant de développements en fractions continues de la même forme que ceux des réels . Et ceci nous permet d’obtenir de plus qu’il existe une infinité de corps quadratiques contenant une infinité de développements en fractions continues périodiques formées seulement des entiers et . Nous...