Displaying 201 – 220 of 1560

Showing per page

Class Number Two for Real Quadratic Fields of Richaud-Degert Type

Mollin, R. A. (2009)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary: 11D09, 11A55, 11C08, 11R11, 11R29; Secondary: 11R65, 11S40; 11R09.This paper contains proofs of conjectures made in [16] on class number 2 and what this author has dubbed the Euler-Rabinowitsch polynomial for real quadratic fields. As well, we complete the list of Richaud-Degert types given in [16] and show how the behaviour of the Euler-Rabinowitsch polynomials and certain continued fraction expansions come into play in the complete determination...

Common terms in binary recurrences

Erzsébet Orosz (2006)

Acta Mathematica Universitatis Ostraviensis

The purpose of this paper is to prove that the common terms of linear recurrences M ( 2 a , - 1 , 0 , b ) and N ( 2 c , - 1 , 0 , d ) have at most 2 common terms if p = 2 , and have at most three common terms if p > 2 where D and p are fixed positive integers and p is a prime, such that neither D nor D + p is perfect square, further a , b , c , d are nonzero integers satisfying the equations a 2 - D b 2 = 1 and c 2 - ( D + p ) d 2 = 1 .

Complete solution of the Diophantine equation x y + y x = z z

Mihai Cipu (2019)

Czechoslovak Mathematical Journal

The triples ( x , y , z ) = ( 1 , z z - 1 , z ) , ( x , y , z ) = ( z z - 1 , 1 , z ) , where z , satisfy the equation x y + y x = z z . In this paper it is shown that the same equation has no integer solution with min { x , y , z } > 1 , thus a conjecture put forward by Z. Zhang, J. Luo, P. Z. Yuan (2013) is confirmed.

Complete solutions of a family of cubic Thue equations

Alain Togbé (2006)

Journal de Théorie des Nombres de Bordeaux

In this paper, we use Baker’s method, based on linear forms of logarithms, to solve a family of Thue equations associated with a family of number fields of degree 3. We obtain all solutions to the Thue equation Φ n ( x , y ) = x 3 + ( n 8 + 2 n 6 - 3 n 5 + 3 n 4 - 4 n 3 + 5 n 2 - 3 n + 3 ) x 2 y - ( n 3 - 2 ) n 2 x y 2 - y 3 = ± 1 , for n 0 .

Complete solutions of a Lebesgue-Ramanujan-Nagell type equation

Priyanka Baruah, Anup Das, Azizul Hoque (2024)

Archivum Mathematicum

We consider the Lebesgue-Ramanujan-Nagell type equation x 2 + 5 a 13 b 17 c = 2 m y n , where a , b , c , m 0 , n 3 and x , y 1 are unknown integers with gcd ( x , y ) = 1 . We determine all integer solutions to the above equation. The proof depends on the classical results of Bilu, Hanrot and Voutier on primitive divisors in Lehmer sequences, and finding all S -integral points on a class of elliptic curves.

Computing all monogeneous mixed dihedral quartic extensions of a quadratic field

István Gaál, Gábor Nyul (2001)

Journal de théorie des nombres de Bordeaux

Let M be a given real quadratic field. We give a fast algorithm for determining all dihedral quartic fields K with mixed signature having power integral bases and containing M as a subfield. We also determine all generators of power integral bases in K . Our algorithm combines a recent result of Kable [9] with the algorithm of Gaál, Pethö and Pohst [6], [7]. To illustrate the method we performed computations for M = ( 2 ) , ( 3 ) , ( 5 ) .

Congruent numbers over real number fields

Tomasz Jędrzejak (2012)

Colloquium Mathematicae

It is classical that a natural number n is congruent iff the rank of ℚ -points on Eₙ: y² = x³-n²x is positive. In this paper, following Tada (2001), we consider generalised congruent numbers. We extend the above classical criterion to several infinite families of real number fields.

Currently displaying 201 – 220 of 1560