The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 41 – 60 of 163

Showing per page

A note on the diophantine equation k 2 - 1 = q n + 1

Maohua Le (1998)

Colloquium Mathematicae

In this note we prove that the equation k 2 - 1 = q n + 1 , q 2 , n 3 , has only finitely many positive integer solutions ( k , q , n ) . Moreover, all solutions ( k , q , n ) satisfy k 10 10 182 , q 10 10 165 and n 2 · 10 17 .

A note on the Diophantine equation P(z) = n! + m!

Maciej Gawron (2013)

Colloquium Mathematicae

We consider the Brocard-Ramanujan type Diophantine equation P(z) = n! + m!, where P is a polynomial with rational coefficients. We show that the ABC Conjecture implies that this equation has only finitely many integer solutions when d ≥ 2 and P ( z ) = a d z d + a d - 3 z d - 3 + + a x + a .

A note on the diophantine equation x 2 + b Y = c z

Maohua Le (2006)

Czechoslovak Mathematical Journal

Let a , b , c , r be positive integers such that a 2 + b 2 = c r , min ( a , b , c , r ) > 1 , gcd ( a , b ) = 1 , a is even and r is odd. In this paper we prove that if b 3 ( m o d 4 ) and either b or c is an odd prime power, then the equation x 2 + b y = c z has only the positive integer solution ( x , y , z ) = ( a , 2 , r ) with min ( y , z ) > 1 .

A note on the number of S -Diophantine quadruples

Florian Luca, Volker Ziegler (2014)

Communications in Mathematics

Let ( a 1 , , a m ) be an m -tuple of positive, pairwise distinct integers. If for all 1 i < j m the prime divisors of a i a j + 1 come from the same fixed set S , then we call the m -tuple S -Diophantine. In this note we estimate the number of S -Diophantine quadruples in terms of | S | = r .

A note on the number of solutions of the generalized Ramanujan-Nagell equation x 2 - D = p n

Yuan-e Zhao, Tingting Wang (2012)

Czechoslovak Mathematical Journal

Let D be a positive integer, and let p be an odd prime with p D . In this paper we use a result on the rational approximation of quadratic irrationals due to M. Bauer, M. A. Bennett: Applications of the hypergeometric method to the generalized Ramanujan-Nagell equation. Ramanujan J. 6 (2002), 209–270, give a better upper bound for N ( D , p ) , and also prove that if the equation U 2 - D V 2 = - 1 has integer solutions ( U , V ) , the least solution ( u 1 , v 1 ) of the equation u 2 - p v 2 = 1 satisfies p v 1 , and D > C ( p ) , where C ( p ) is an effectively computable constant...

Currently displaying 41 – 60 of 163