A note on the diophantine equation a²x⁴ - By² = 1
In this note we prove that the equation , , has only finitely many positive integer solutions . Moreover, all solutions satisfy , and .
We consider the Brocard-Ramanujan type Diophantine equation P(z) = n! + m!, where P is a polynomial with rational coefficients. We show that the ABC Conjecture implies that this equation has only finitely many integer solutions when d ≥ 2 and .
Let , , , be positive integers such that , , is even and is odd. In this paper we prove that if and either or is an odd prime power, then the equation has only the positive integer solution with .
Let m be a positive integer. Using an upper bound for the solutions of generalized Ramanujan-Nagell equations given by Y. Bugeaud and T. N. Shorey, we prove that if 3 ∤ m, then the equation has only the positive integer solution (x,y,z) = (1,1,2).
Let be an -tuple of positive, pairwise distinct integers. If for all the prime divisors of come from the same fixed set , then we call the -tuple -Diophantine. In this note we estimate the number of -Diophantine quadruples in terms of .
Let be a positive integer, and let be an odd prime with . In this paper we use a result on the rational approximation of quadratic irrationals due to M. Bauer, M. A. Bennett: Applications of the hypergeometric method to the generalized Ramanujan-Nagell equation. Ramanujan J. 6 (2002), 209–270, give a better upper bound for , and also prove that if the equation has integer solutions , the least solution of the equation satisfies , and , where is an effectively computable constant...