Sur la représentation en somme de carrés des polynômes à une indéterminée sur un corps de nombres algébriques
Soit un corps de nombres galoisien sur de degré impair, et soit son groupe de Galois. Alors il existe un unique idéal fractionnaire de qui soit unimodulaire pour la forme quadratique . Cet idéal est la racine carrée de la codifférente, et est noté . Dans cet article, on décrit un représentant explicite de la classe de -isométrie du couple , ne dépendant que des nombres premiers sauvagement ramifiés dans , et dont le degré de ramification est différent de .
Afin de disposer des opérations cohomologiques aussi souples que possible pour la cohomologie de de Rham -adique, le but principal de ce mémoire est de résoudre intrinsèquement du point de vue cohomologique le problème des relèvements des schémas lisses et de leurs morphismes de la caractéristique à la caractéristique nulle ce qui a été l’une des difficultés centrales de la théorie de la cohomologie de de Rham des schémas algébriques en caractéristique positive depuis le début. Nous montrons...
Soit l’ensemble des points rationnels d’un groupe algébrique réductif non connexe -adique de caractéristique . Soit la composante neutre de . On suppose que est commutatif et fini. Notre motivation pour cette note est de rejoindre le cas connexe d’un papier précédent, Bettaïeb, (2003). Autrement dit, de retrouver une analogue à notre classification des représentations irréductibles tempérées de , lorsque est connexe. C’est-à-dire que toute représentation irréductible tempérée de est...