On Ramanujan's cubic continued fraction
We investigate the average behavior of the th normalized Fourier coefficients of the th ( be any fixed integer) symmetric power -function (i.e., ), attached to a primitive holomorphic cusp form of weight for the full modular group over certain sequences of positive integers. Precisely, we prove an asymptotic formula with an error term for the sum where is sufficiently large, and When , the error term which we obtain improves the earlier known result.
Zeta-functions associated with modified Bessel functions are introduced as ordinary Dirichlet series whose coefficients are J-Bessel and K-Bessel functions. Integral representations, transformation formulas, a power series expansion involving the Riemann zeta-function and a recurrence formula are given. The inverse Laplace transform of Weber's first exponential integral is the basic tool to derive the integral representations. As an application, we give a new proof of the Fourier series expansion...
Let be a normalized primitive holomorphic cusp form of even integral weight for the full modular group . Denote by the th normalized Fourier coefficient of . We are interested in the average behaviour of the sum for , where and is any fixed positive integer. In a similar manner, we also establish analogous results for the normalized coefficients of Dirichlet expansions of associated symmetric power -functions and Rankin-Selberg -functions.
We explore the question of how big the image of a Galois representation attached to a -adic modular form with no complex multiplication is and show that for a “generic” set of -adic modular forms (normalized, ordinary eigenforms with no complex multiplication), all have a large image.