Maass operators and van der Pol-type identities for Ramanujan's tau function
Dominic Lanphier (2004)
Acta Arithmetica
Paul C. Pasles (1999)
Acta Arithmetica
1. Introduction. Since its genesis over a century ago in work of Jacobi, Riemann, Poincar ́e and Klein [Ja29, Ri53, Le64], the theory of automorphic forms has burgeoned from a branch of analytic number theory into an industry all its own. Natural extensions of the theory are to integrals [Ei57, Kn94a, KS96, Sh94], thereby encompassing Hurwitz’s prototype, the analytic weight 2 Eisenstein series [Hu81], and to nonanalytic forms [He59, Ma64, Sel56, ER74, Fr85]. A generalization in both directions...
Arvind Kumar, Jaban Meher (2016)
Acta Arithmetica
We characterize all the cases in which products of arbitrary numbers of nearly holomorphic eigenforms and products of arbitrary numbers of quasimodular eigenforms for the full modular group SL₂(ℤ) are again eigenforms.
N.V. Proskurin (1988)
Journal für die reine und angewandte Mathematik
Winfried Kohnen (1992)
Mathematische Annalen
Stephan Baier, Liangyi Zhao (2013)
Acta Arithmetica
We study the average of the Fourier coefficients of a holomorphic cusp form for the full modular group at primes of the form [g(n)].
Eknath Ghate (2002)
Acta Arithmetica
M. Manickam, B. Ramakrishnan (1993)
Manuscripta mathematica
Ernst-Ulrich Gekeler (1988)
Inventiones mathematicae
Koopa Tak-Lun Koo, William Stein, Gabor Wiese (2008)
Journal de Théorie des Nombres de Bordeaux
Let be a non-CM newform of weight . Let be a subfield of the coefficient field of . We completely settle the question of the density of the set of primes such that the -th coefficient of generates the field . This density is determined by the inner twists of . As a particular case, we obtain that in the absence of nontrivial inner twists, the density is for equal to the whole coefficient field. We also present some new data on reducibility of Hecke polynomials, which suggest questions...
L. J. P Kilford (2008)
Journal de Théorie des Nombres de Bordeaux
We show that the slopes of the operator acting on 5-adic overconvergent modular forms of weight with primitive Dirichlet character of conductor 25 are given by eitherdepending on and .We also prove that the space of classical cusp forms of weight and character has a basis of eigenforms for the Hecke operators and which is defined over .
Yuji Hasegawa, Ki-ichiro Hashimoto (1995)
Manuscripta mathematica
Loïc Merel (1991)
Annales de l'institut Fourier
Nous rappelons que Manin décrit l’homologie singulière relative aux pointes de la courbe modulaire comme un quotient du groupe . En s’appuyant sur des techniques de fractions continues, nous donnons une expression indépendante de d’un relèvement de l’action des opérateurs de Hecke de sur .
Baker, Andrew (1994)
The New York Journal of Mathematics [electronic only]
Liangyi Zhao (2006)
Revista Matemática Iberoamericana
In this paper, we are interested in exploring the cancellation of Hecke eigenvalues twisted with an exponential sums whose amplitude is √n at prime arguments.
H. COHEN (1977/1978)
Seminaire de Théorie des Nombres de Bordeaux
Kenneth S. Williams (2013)
Acta Arithmetica
Wenzhi Luo, Peter Sarnak (2004)
Annales scientifiques de l'École Normale Supérieure
G. Chinta, N. Diamantis (2002)
Acta Arithmetica
Lario, Joan-C., Schoof, René (2002)
Experimental Mathematics