Maass operators and van der Pol-type identities for Ramanujan's tau function
1. Introduction. Since its genesis over a century ago in work of Jacobi, Riemann, Poincar ́e and Klein [Ja29, Ri53, Le64], the theory of automorphic forms has burgeoned from a branch of analytic number theory into an industry all its own. Natural extensions of the theory are to integrals [Ei57, Kn94a, KS96, Sh94], thereby encompassing Hurwitz’s prototype, the analytic weight 2 Eisenstein series [Hu81], and to nonanalytic forms [He59, Ma64, Sel56, ER74, Fr85]. A generalization in both directions...
We characterize all the cases in which products of arbitrary numbers of nearly holomorphic eigenforms and products of arbitrary numbers of quasimodular eigenforms for the full modular group SL₂(ℤ) are again eigenforms.
We study the average of the Fourier coefficients of a holomorphic cusp form for the full modular group at primes of the form [g(n)].
Let be a non-CM newform of weight . Let be a subfield of the coefficient field of . We completely settle the question of the density of the set of primes such that the -th coefficient of generates the field . This density is determined by the inner twists of . As a particular case, we obtain that in the absence of nontrivial inner twists, the density is for equal to the whole coefficient field. We also present some new data on reducibility of Hecke polynomials, which suggest questions...
We show that the slopes of the operator acting on 5-adic overconvergent modular forms of weight with primitive Dirichlet character of conductor 25 are given by eitherdepending on and .We also prove that the space of classical cusp forms of weight and character has a basis of eigenforms for the Hecke operators and which is defined over .
Nous rappelons que Manin décrit l’homologie singulière relative aux pointes de la courbe modulaire comme un quotient du groupe . En s’appuyant sur des techniques de fractions continues, nous donnons une expression indépendante de d’un relèvement de l’action des opérateurs de Hecke de sur .
In this paper, we are interested in exploring the cancellation of Hecke eigenvalues twisted with an exponential sums whose amplitude is √n at prime arguments.