Unitary representations with non-zero cohomology
Nous montrons une version explicite du théorème de Beilinson pour la courbe modulaire . Ce résultat est la première étape d’un travail reliant, d’une part, la valeur en de la fonction d’une forme primitive de poids , et d’autre part, la fonction dilogarithme associée à la courbe modulaire correspondante, dans l’esprit de la conjecture de Zagier pour les courbes elliptiques. Comme corollaire de notre théorème, dans le cas où est premier, nous répondons à une question de Schappacher et Scholl...
Let be an imaginary quadratic field and its ring of integers. Let be a non-zero ideal and let be a rational inert prime in and coprime with . Let be an irreducible finite dimensional representation of . We establish that a system of Hecke eigenvalues appearing in the cohomology with coefficients in already lives in the cohomology with coefficients in for some ; except possibly in some few cases.