Optimal levels for modular mod 2 representations over totally real fields.
The purpose of this work is to carry out the first step in our four-step program towards the main conjecture for by the method of Eisenstein congruence on , where is an imaginary quadratic field. We construct a -adic family of ordinary Eisenstein series on the group of unitary similitudes with the optimal constant term which is basically the product of the Kubota-Leopodlt -adic -function and a -adic -function for . This construction also provides a different point of view of -adic...
In this paper, we are interested in exploring the cancellation of Hecke eigenvalues twisted with an exponential sums whose amplitude is √n at prime arguments.
We give a geometric definition of overconvergent modular forms of any -adic weight. As an application, we reprove Coleman’s theory of -adic families of modular forms and reconstruct the eigencurve of Coleman and Mazur without using the Eisenstein family.
This paper is a constructive investigation of the relationship between classical modular symbols and overconvergent -adic modular symbols. Specifically, we give a constructive proof of acontrol theorem (Theorem 1.1) due to the second author [19] proving existence and uniqueness of overconvergent eigenliftings of classical modular eigensymbols of non-critical slope. As an application we describe a polynomial-time algorithm for explicit computation of associated -adic -functions in this case. In...