Page 1

Displaying 1 – 19 of 19

Showing per page

K-finite Whittaker functions are of finite order one

(2013)

Acta Arithmetica

We prove a finite order one type estimate for the Whittaker function attached to a K-finite section of a principle series representation of a real or complex Chevalley group. Effective computations are made using convexity in ℂⁿ, following the original paper of Jacquet. As an application, we give a simplified proof of the known result of the boundedness in vertical strips of certain automorphic L-functions, using a result of Müller.

Kloosterman sums in residue classes

Valentin Blomer, Djordje Milićević (2015)

Journal of the European Mathematical Society

We prove upper bounds for sums of Kloosterman sums against general arithmetic weight functions. In particular, we obtain power cancellation in sums of Kloosterman sums over arithmetic progressions, which is of square-root strength in any fixed primitive congruence class up to bounds towards the Ramanujan conjecture.

Kloosterman-Fourier inversion for symmetric matrices

Omer Offen (2005)

Bulletin de la Société Mathématique de France

We formulate a Kloosterman transform on the space of generalized Kloosterman integrals on symmetric matrices, and obtain an inversion formula. The formula is a step towards a fundamental lemma of the Jacquet type. At the same time it hints towards a conjectural relative trace formula identity, associated with the metaplectic correspondence.

Koecher-Maass series of a certain half-integral weight modular form related to the Duke-Imamoḡlu-Ikeda lift

Hidenori Katsurada, Hisa-aki Kawamura (2014)

Acta Arithmetica

Let k and n be positive even integers. For a cuspidal Hecke eigenform h in the Kohnen plus space of weight k - n/2 + 1/2 for Γ₀(4), let f be the corresponding primitive form of weight 2k-n for SL₂(ℤ) under the Shimura correspondence, and Iₙ(h) the Duke-Imamoḡlu-Ikeda lift of h to the space of cusp forms of weight k for Spₙ(ℤ). Moreover, let ϕ I ( h ) , 1 be the first Fourier-Jacobi coefficient of Iₙ(h), and σ n - 1 ( ϕ I ( h ) , 1 ) be the cusp form in the generalized Kohnen plus space of weight k - 1/2 corresponding to ϕ I ( h ) , 1 under the...

Kronecker’s solution of Pell’s equation for CM fields

Riad Masri (2013)

Annales de l’institut Fourier

We generalize Kronecker’s solution of Pell’s equation to CM fields K whose Galois group over is an elementary abelian 2-group. This is an identity which relates CM values of a certain Hilbert modular function to products of logarithms of fundamental units. When K is imaginary quadratic, these CM values are algebraic numbers related to elliptic units in the Hilbert class field of K . Assuming Schanuel’s conjecture, we show that when K has degree greater than 2 over these CM values are transcendental....

Currently displaying 1 – 19 of 19

Page 1