Galois representations
To an odd irreducible 2-dimensional complex linear representation of the absolute Galois group of the field Q of rational numbers, a modular form of weight 1 is associated (modulo Artin's conjecture on the L-series of the representation in the icosahedral case). In addition, linear liftings of 2-dimensional projective Galois representations are related to solutions of certain Galois embedding problems. In this paper we present some recent results on the existence of liftings of projective representations...
We interpolate the Gauss–Manin connection in -adic families of nearly overconvergent modular forms. This gives a family of Maass–Shimura type differential operators from the space of nearly overconvergent modular forms of type to the space of nearly overconvergent modular forms of type with -adic weight shifted by . Our construction is purely geometric, using Andreatta–Iovita–Stevens and Pilloni’s geometric construction of eigencurves, and should thus generalize to higher rank groups.
Suppose that is a primitive Hecke eigenform or a Mass cusp form for with normalized eigenvalues and let be a real number. We consider the sum and show that for every and . The same problem was considered for the case , that is for the full modular group in Lü (2012) and Kanemitsu et al. (2002). We consider the problem in a more general setting and obtain bounds which are better than those obtained by the classical result of Landau (1915) for . Since the result is valid for arbitrary...