Maximal independent systems of units in global function fields
Given an odd prime and a representation of the absolute Galois group of a number field onto with cyclotomic determinant, the moduli space of elliptic curves defined over with -torsion giving rise to consists of two twists of the modular curve . We make here explicit the only genus-zero cases and , which are also the only symmetric cases: for or , respectively. This is done by studying the corresponding twisted Galois actions on the function field of the curve, for which...
Using the recent isogeny bounds due to Gaudron and Rémond we obtain the triviality of , for and a prime number exceeding . This includes the case of the curves . We then prove, with the help of computer calculations, that the same holds true for in the range , . The combination of those results completes the qualitative study of rational points on undertook in our previous work, with the only exception of .
We propose a definition of sign of imaginary quadratic fields. We give an example of such functions, and use it to define new invariants that are roots of the classical Ramachandra invariants. Also we introduce signed ordinary distributions and compute their signed cohomology by using Anderson's theory of double complex.
À partir des formes de Jacobi , on construit une somme de Dedekind elliptique. On obtient ainsi un analogue elliptique aux sommes multiples de Dedekind construites à partir des fonctions cotangentes, étudiées par D. Zagier. En outre, on établit une loi de réciprocité satisfaite par ces nouvelles sommes. Par une procédure de limite, on peut retrouver la loi de réciprocité remplie par les sommes multiples de Dedekind classiques. D’autre part, en les spécialisant en des paramètres de points de 2- division,...
On étudie une famille de corps réels cycliques de degré 10 liés à la courbe modulaire . Les unités modulaires déterminent un sous-groupe d’unités d’indice fini. Sous certaines conditions, cet indice est égal à 1 ou 5.
Cet article rend compte de résultats sur les unités elliptiques prouvés récemment par l’auteur concernant l’indice des groupes engendrés par ces unités et son comportement dans les -extensions.