Small zeros of hermitian forms over a quaternion algebra
Let K be any quadratic field with its ring of integers. We study the solutions of cubic equations, which represent elliptic curves defined over ℚ, in quadratic fields and prove some interesting results regarding the solutions by using elementary tools. As an application we consider the Diophantine equation r+s+t = rst = 1 in . This Diophantine equation gives an elliptic curve defined over ℚ with finite Mordell-Weil group. Using our study of the solutions of cubic equations in quadratic fields...
Let k ∈ ℤ be such that is finite, where . We complete the determination of all solutions to xyz = 1 and x + y + z = k in integers of number fields of degree at most four over ℚ.
This article concerns the problem of solving diophantine equations in rational numbers. It traces the way in which the 19th century broke from the centuries-old tradition of the purely algebraic treatment of this problem. Special attention is paid to Sylvester’s work “On Certain Ternary Cubic-Form Equations” (1879–1880), in which the algebraico-geometrical approach was applied to the study of an indeterminate equation of third degree.
We perform descent calculations for the families of elliptic curves over with a rational point of order or 7. These calculations give an estimate for the Mordell-Weil rank which we relate to the parity conjecture. We exhibit explicit elements of the Tate-Shafarevich group of order 5 and 7, and show that the 5-torsion of the Tate-Shafarevich group of an elliptic curve over may become arbitrarily large.
For a commutative algebraic group over a perfect field , Ribet defined the set of almost rational torsion points of over . For positive integers , we show there is an integer such that for all tori of dimension at most over number fields of degree at most , . We show the corresponding result for abelian varieties with complex multiplication, and under an additional hypothesis, for elliptic curves without complex multiplication. Finally, we show that except for an explicit finite...
À partir des formes de Jacobi , on construit une somme de Dedekind elliptique. On obtient ainsi un analogue elliptique aux sommes multiples de Dedekind construites à partir des fonctions cotangentes, étudiées par D. Zagier. En outre, on établit une loi de réciprocité satisfaite par ces nouvelles sommes. Par une procédure de limite, on peut retrouver la loi de réciprocité remplie par les sommes multiples de Dedekind classiques. D’autre part, en les spécialisant en des paramètres de points de 2- division,...
Recently, Baily has established new foundation for complex multiplication in the context of Hilbert modular functions; see [1]-[4]. However, in his treatment there is a restriction on the class of CM-points treated. Namely, the order of complex multiplications associated to the point must be the maximal order in its quotient field. The purpose of this paper is two-fold: (1) to remove the restriction just mentioned; (2) to recover a result of Tate on the conjugates of CM-points by arbitrary Galois...
Let be a number field, and suppose is irreducible over . Using algebraic geometry and group theory, we describe conditions under which the -exceptional set of , i.e. the set of for which the specialized polynomial is -reducible, is finite. We give three applications of the methods we develop. First, we show that for any fixed , all but finitely many -specializations of the degree generalized Laguerre polynomial are -irreducible and have Galois group . Second, we study specializations...