Fonctions elliptiques et nombres transcendants
Let K be a number field, X be a smooth projective curve over it and D be a reduced divisor on X. Let (E,∇) be a vector bundle with connection having meromorphic singularities on D. Let and (the ’s may be in the support of D). Using tools from Nevanlinna theory and formal geometry, we give the definition of E-section of arithmetic type of the vector bundle E with respect to the points ; this is the natural generalization of the notion of E-function defined in Siegel-Shidlovskiĭ theory. We prove...
Est-il possible d’utiliser les propriétés de la fonction modulaire pour avancer un peu en direction de la conjecture des quatre exponentielles ? Sur ce thème, le texte propose plusieurs conjectures équivalentes et quelques résultats partiels.
Dans ce texte, nous déterminons explicitement les idéaux premiers différentiellement stables dans l’anneau des formes quasi-modulaires pour . Les techniques introduites permettent de préciser des résultats de Nesterenko dans [5] et [6].
For , , , let be the -th polylogarithm of . We prove that for any non-zero algebraic number such that , the -vector space spanned by has infinite dimension. This result extends a previous one by Rivoal for rational . The main tool is a method introduced by Fischler and Rivoal, which shows the coefficients of the polylogarithms in the relevant series to be the unique solution of a suitable Padé approximation problem.
The goal of this article is to associate a -adic analytic function to the Euler constants , study the properties of these functions in the neighborhood of and introduce a -adic analogue of the infinite sum for an algebraic valued, periodic function . After this, we prove the theorem of Baker, Birch and Wirsing in this setup and discuss irrationality results associated to -adic Euler constants generalising the earlier known results in this direction. Finally, we define and prove certain...
Here we characterise, in a complete and explicit way, the relations of algebraic dependence over of complex values of Hecke-Mahler series taken at algebraic points of the multiplicative group , under a technical hypothesis that a certain sub-module of generated by the ’s has rank one (rank one hypothesis). This is the first part of a work, announced in [Pel1], whose main objective is completely to solve a general problem on the algebraic independence of values of these series.
On étudie certaines propriétés arithmétiques de fonctions analytique au voisinage de où et satisfaisant une équation fonctionnelle de Poincaré.
On sait (Cobham) qu’une suite - et -automatique est une suite rationnelle. Une question de Loxton et van der Poorten étend ce résultat au cas - et -régulier. On montre dans cet article que, si une suite vérifie une récurrence - et -mahlérienne d’ordre un, elle est rationnelle.