On the -ary expansion of an algebraic number
Employing concepts from additive number theory, together with results on binary evaluations and partial series, we establish bounds on the density of 1’s in the binary expansions of real algebraic numbers. A central result is that if a real has algebraic degree , then the number of 1-bits in the expansion of through bit position satisfiesfor a positive number (depending on ) and sufficiently large . This in itself establishes the transcendency of a class of reals where the integer-valued...
We construct a Markov normal sequence with a discrepancy of . The estimation of the discrepancy was previously known to be .
If denotes the sequence of best approximation denominators to a real , and denotes the sum of digits of in the digit representation of to base , then for all irrational, the sequence is uniformly distributed modulo one. Discrepancy estimates for the discrepancy of this sequence are given, which turn out to be best possible if has bounded continued fraction coefficients.
For a real number and a positive integer , let . In this paper, we show that is dense in if and only if and is not a Pisot number. This completes several previous results and answers an open question raised by Erdös, Joó and Komornik [8].