Displaying 401 – 420 of 1160

Showing per page

Incomplete character sums and a special class of permutations

S. D. Cohen, H. Niederreiter, I. E. Shparlinski, M. Zieve (2001)

Journal de théorie des nombres de Bordeaux

We present a method of bounding incomplete character sums for finite abelian groups with arguments produced by a first-order recursion. This method is particularly effective if the recursion involves a special type of permutation called an -orthomorphism. Examples of -orthomorphisms are given.

Integers in number systems with positive and negative quadratic Pisot base

Z. Masáková, T. Vávra (2014)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We consider numeration systems with base β and − β, for quadratic Pisot numbers β and focus on comparing the combinatorial structure of the sets Zβ and Z− β of numbers with integer expansion in base β, resp. − β. Our main result is the comparison of languages of infinite words uβ and u− β coding the ordering of distances between consecutive β- and (− β)-integers. It turns out that for a class of roots β of x2 − mx − m, the languages coincide, while for other quadratic Pisot numbers the language...

Introduction to Liouville Numbers

Adam Grabowski, Artur Korniłowicz (2017)

Formalized Mathematics

The article defines Liouville numbers, originally introduced by Joseph Liouville in 1844 [17] as an example of an object which can be approximated “quite closely” by a sequence of rational numbers. A real number x is a Liouville number iff for every positive integer n, there exist integers p and q such that q > 1 and [...] It is easy to show that all Liouville numbers are irrational. Liouville constant, which is also defined formally, is the first transcendental (not algebraic) number. It is...

Currently displaying 401 – 420 of 1160