Displaying 201 – 220 of 1029

Showing per page

Dedekind sums involving Jacobi modular forms and special values of Barnes zeta functions

Abdelmejid Bayad, Yilmaz Simsek (2011)

Annales de l’institut Fourier

In this paper we study three new shifted sums of Apostol-Dedekind-Rademacher type. The first sums are written in terms of Jacobi modular forms, and the second sums in terms of cotangent and the third sums are expressed in terms of special values of the Barnes multiple zeta functions. These sums generalize the classical Dedekind-Rademacher sums. The main aim of this paper is to state and prove the Dedekind reciprocity laws satisfied by these new sums. As an application of our Dedekind reciprocity...

Digits and continuants in euclidean algorithms. Ergodic versus tauberian theorems

Brigitte Vallée (2000)

Journal de théorie des nombres de Bordeaux

We obtain new results regarding the precise average-case analysis of the main quantities that intervene in algorithms of a broad Euclidean type. We develop a general framework for the analysis of such algorithms, where the average-case complexity of an algorithm is related to the analytic behaviour in the complex plane of the set of elementary transformations determined by the algorithms. The methods rely on properties of transfer operators suitably adapted from dynamical systems theory and provide...

Dirichlet series induced by the Riemann zeta-function

Jun-ichi Tanaka (2008)

Studia Mathematica

The Riemann zeta-function ζ(s) extends to an outer function in ergodic Hardy spaces on ω , the infinite-dimensional torus indexed by primes p. This enables us to investigate collectively certain properties of Dirichlet series of the form ( a p , s ) = p ( 1 - a p p - s ) - 1 for a p in ω . Among other things, using the Haar measure on ω for measuring the asymptotic behavior of ζ(s) in the critical strip, we shall prove, in a weak sense, the mean-value theorem for ζ(s), equivalent to the Lindelöf hypothesis.

Currently displaying 201 – 220 of 1029