Computations concerning the conjecture of Mertens.
We extend the "character sum method" for the computation of densities in Artin primitive root problems given by Lenstra and the authors to the situation of radical extensions of arbitrary rank. Our algebraic set-up identifies the key parameters of the situation at hand, and obviates the lengthy analytic multiplicative number theory arguments that used to go into the computation of actual densities. It yields a conceptual interpretation of the formulas obtained, and enables us to extend their range...
0. Introduction. The content of this paper is part of the author's Ph.D. thesis. The two new theorems in this paper provide upper bounds on the concentration function of additive functions evaluated on shifted γ-twin prime, where γ is any positive even integers. Both results are generalizations of theorems due to I. Z. Ruzsa, N. M. Timofeev, and P. D. T. A. Elliott.
In a stunning new advance towards the Prime k-Tuple Conjecture, Maynard and Tao have shown that if k is sufficiently large in terms of m, then for an admissible k-tuple of linear forms in ℤ[x], the set contains at least m primes for infinitely many n ∈ ℕ. In this note, we deduce that contains at least m consecutive primes for infinitely many n ∈ ℕ. We answer an old question of Erdős and Turán by producing strings of m + 1 consecutive primes whose successive gaps form an increasing (resp....
We show that for any given integer there exist infinitely many consecutive square-free numbers of the type , . We also establish an asymptotic formula for such that , are square-free. The method we used in this paper is due to Tolev.
We construct normal numbers in base q by concatenating q-ary expansions of pseudo-polynomials evaluated at primes. This extends a recent result by Tichy and the author.
This Note completes and corrects a preceding Lincean Note by introducing through a tauberian theorem an appropriate condition which removes a counter-example provided by Dr. Zhang.