Errata to "Average orders of multiplicative arithmetical functions of integer matrices" (Acta Arith. 66 (1994), 45-62)
A positive integer n is called E-symmetric if there exists a positive integer m such that |m-n| = (ϕ(m),ϕ(n)), and n is called E-asymmetric if it is not E-symmetric. We show that there are infinitely many E-symmetric and E-asymmetric primes.
Let denote the number of representations of the positive number n as the sum of two squares and s biquadrates. When or 4, it is established that the anticipated asymptotic formula for holds for all with at most exceptions.
We obtain some approximate identities whose accuracy depends on the bottom of the discrete spectrum of the Laplace-Beltrami operator in the automorphic setting and on the symmetries of the corresponding Maass wave forms. From the geometric point of view, the underlying Riemann surfaces are classical modular curves and Shimura curves.
We note that every positive integer N has a representation as a sum of distinct members of the sequence , where d(m) is the number of divisors of m. When N is a member of a binary recurrence satisfying some mild technical conditions, we show that the number of such summands tends to infinity with n at a rate of at least c₁logn/loglogn for some positive constant c₁. We also compute all the Fibonacci numbers of the form d(m!) and d(m₁!) + d(m₂)! for some positive integers m,m₁,m₂.
We prove that the error term differs from (ψ(x)-x)/x by a well controlled function. We deduce very precise numerical results from the formula obtained.
We prove that for every x > q ≥ 1, and similar estimates for the Liouville function. We also give better constants when x/q is large.,