On a Relation Between Sums of Arithmetical Functions and Dirichlet Series
Let be the set of prime numbers (or more generally a set of pairwise co-prime elements). Let us denote , where . Then for arbitrary finite set , holds and If we denote where is the set of all prime numbers, then for closure of set holds where .
Let be the integral part of a real number , and let be the arithmetic function satisfying some simple condition. We establish a new asymptotical formula for the sum , which improves the recent result of J. Stucky (2022).
Let be the Ramanujan sum, i.e. , where μ is the Möbius function. In a paper of Chan and Kumchev (2012), asymptotic formulas for (k = 1,2) are obtained. As an analogous problem, we evaluate (k = 1,2), where .
Let 1 < k < 33/29. We prove that if λ₁, λ₂ and λ₃ are non-zero real numbers, not all of the same sign and such that λ₁/λ₂ is irrational, and ϖ is any real number, then for any ε > 0 the inequality has infinitely many solutions in prime variables p₁, p₂, p₃.