Displaying 741 – 760 of 1791

Showing per page

On consecutive integers divisible by the number of their divisors

Titu Andreescu, Florian Luca, M. Tip Phaovibul (2016)

Acta Arithmetica

We prove that there are no strings of three consecutive integers each divisible by the number of its divisors, and we give an estimate for the number of positive integers n ≤ x such that each of n and n + 1 is a multiple of the number of its divisors.

On differences of two squares

Manfred Kühleitner, Werner Nowak (2006)

Open Mathematics

The arithmetic function ρ(n) counts the number of ways to write a positive integer n as a difference of two squares. Its average size is described by the Dirichlet summatory function Σn≤x ρ(n), and in particular by the error term R(x) in the corresponding asymptotics. This article provides a sharp lower bound as well as two mean-square results for R(x), which illustrates the close connection between ρ(n) and the number-of-divisors function d(n).

Currently displaying 741 – 760 of 1791