Displaying 801 – 820 of 1791

Showing per page

On prime factors of integers of the form (ab+1)(bc+1)(ca+1)

K. Győry, A. Sárközy (1997)

Acta Arithmetica

1. Introduction. For any integer n > 1 let P(n) denote the greatest prime factor of n. Győry, Sárközy and Stewart [5] conjectured that if a, b and c are pairwise distinct positive integers then (1) P((ab+1)(bc+1)(ca+1)) tends to infinity as max(a,b,c) → ∞. In this paper we confirm this conjecture in the special case when at least one of the numbers a, b, c, a/b, b/c, c/a has bounded prime factors. We prove our result in a quantitative form by showing that if is a finite set of triples (a,b,c)...

On prime values of reducible quadratic polynomials

W. Narkiewicz, T. Pezda (2002)

Colloquium Mathematicae

It is shown that Dickson’s Conjecture about primes in linear polynomials implies that if f is a reducible quadratic polynomial with integral coefficients and non-zero discriminant then for every r there exists an integer N r such that the polynomial f ( X ) / N r represents at least r distinct primes.

On rough and smooth neighbors.

William D. Banks, Florian Luca, Igor E. Shparlinski (2007)

Revista Matemática Complutense

We study the behavior of the arithmetic functions defined byF(n) = P+(n) / P-(n+1) and G(n) = P+(n+1) / P-(n) (n ≥ 1)where P+(k) and P-(k) denote the largest and the smallest prime factors, respectively, of the positive integer k.

Currently displaying 801 – 820 of 1791