An asymptotic formula in the theory of numbers
Let d(n) stand for the Dirichlet divisor function. We give an asymptotic formula for with the help of the circle method.
We prove some connections between the growth of a function and its Mellin transform and apply these to study an explicit example in the theory of Beurling primes. The example has its generalised Chebyshev function given by [x]-1, and associated zeta function ζ₀(s) given via , where ζ is Riemann’s zeta function. We study the behaviour of the corresponding Beurling integer counting function N(x), producing O- and Ω- results for the ’error’ term. These are strongly influenced by the size of ζ(s) near...
The various properties of classical Dedekind sums have been investigated by many authors. For example, Yanni Liu and Wenpeng Zhang: A hybrid mean value related to the Dedekind sums and Kloosterman sums, Acta Mathematica Sinica, 27 (2011), 435–440 studied the hybrid mean value properties involving Dedekind sums and generalized Kloosterman sums . The main purpose of this paper, is using the analytic methods and the properties of character sums, to study the computational problem of one kind of...