Additive problems with prime numbers of special type
We examine additive properties of dense subsets of sifted sequences, and in particular prove under very general assumptions that such a sequence is an additive asymptotic basis whose order is very well controlled.
Let , be a Cantor scale, the compact projective limit group of the groups , identified to , and let be its normalized Haar measure. To an element , of we associate the sequence of integral valued random variables . The main result of this article is that, given a complex -multiplicative function of modulus , we have
Let denote Euler’s totient function. A century-old conjecture of Carmichael asserts that for every , the equation has a solution . This suggests defining as the number of solutions to the equation . (So Carmichael’s conjecture asserts that always.) Results on are scattered throughout the literature. For example, Sierpiński conjectured, and Ford proved, that the range of contains every natural number . Also, the maximal order of has been investigated by Erdős and Pomerance. In...