Ideal Criteria for both Ideal Criteria for both X2-dy2 = M1 And X2-dy2 = M2 to have Primitive Solutions for any Integers M1, M2 Prime to D > 0
This article provides necessary and sufficient conditions for both of the Diophantine equations X^2 − DY^2 = m1 and x^2 − Dy^2 = m2 to have primitive solutions when m1 , m2 ∈ Z, and D ∈ N is not a perfect square. This is given in terms of the ideal theory of the underlying real quadratic order Z[√D].