Teilkörper relativ abelscher Erweiterungen imaginär-quadratischer Zahlkörper, deren Klassenzahl durch Primteiler des Körpergrades teilbar ist.
1. Introduction. Let F be a number field and the ring of its integers. Many results are known about the group , the tame kernel of F. In particular, many authors have investigated the 2-Sylow subgroup of . As compared with real quadratic fields, the 2-Sylow subgroups of for imaginary quadratic fields F are more difficult to deal with. The objective of this paper is to prove a few theorems on the structure of the 2-Sylow subgroups of for imaginary quadratic fields F. In our Ph.D. thesis (see...
We solve unconditionally the class number one problem for the 2-parameter family of real quadratic fields ℚ(√d) with square-free discriminant d = (an)²+4a for positive odd integers a and n.
General concepts and strategies are developed for identifying the isomorphism type of the second -class group , that is the Galois group of the second Hilbert -class field , of a number field , for a prime . The isomorphism type determines the position of on one of the coclass graphs , , in the sense of Eick, Leedham-Green, and Newman. It is shown that, for special types of the base field and of its -class group , the position of is restricted to certain admissible branches of coclass...