A class of diophantine equations connected with certain elliptic curves over Q ( - 13 ) R. J. Stroeker (1979) Compositio Mathematica
A complete generalization of Yokoi's p-invariants R. Mollin, H. Williams (1992) Colloquium Mathematicae
A congruence relating to class number of complex quadratic fields Kenneth Hardy, Kenneth Williams (1986) Acta Arithmetica
A correction to the paper "Upper bounds for class numbers of real quadratic fields" (Acta Arith. 68 (1994), 141-144) Maohua Le (1995) Acta Arithmetica
A family of infinite pairs of quadratic fields ℚ(√D) and ℚ(√-D) whose class numbers are both divisible by 3 Toru Komatsu (2001) Acta Arithmetica
A further note on the class number of real quadratic fields N. Ankeny, S Chowla (1962) Acta Arithmetica
A generalization of the Chowla-Selberg formula. Y. Nakkajima, Y. Taguchi (1991) Journal für die reine und angewandte Mathematik
A generalization of the Lerch-Mordell formulas for positive discriminants Jerzy Urbanowicz (1990) Colloquium Mathematicae
A hyperelliptic diophantine equation related to imaginary quadratic number fields with class number 2. B.M.M. de de Weger (1992) Journal für die reine und angewandte Mathematik
A note on basic Iwasawa ?-invariants of imaginary quadratic fields. K. Horie (1987) Inventiones mathematicae
A note on basic Iwasawa λ-invariants of imaginary quadratic fields and congruence of modular forms Dongho Byeon (1999) Acta Arithmetica
A note on Greenberg's cojecture for real abelian number fields. Manabu Ozaki, Hisao Taya (1995) Manuscripta mathematica
A note on the Diophantine equation D 1 x 2 + D 2 = a k n . Mollin, R.A. (2005) Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
A note on the existence of certain infinite families of imaginary quadratic fields Iwao Kimura (2003) Acta Arithmetica
A Note on the Normality of Unramified, Abelian Extensions of Quadratic Extensions. Daniel J. Madden, William Yslas Velez (1979/1980) Manuscripta mathematica
A quadratic field of prime discriminant requiring three generators for its class group, and related theory Daniel Shanks, Peter Weinberger (1972) Acta Arithmetica