Previous Page 2

Displaying 21 – 26 of 26

Showing per page

On the strongly ambiguous classes of some biquadratic number fields

Abdelmalek Azizi, Abdelkader Zekhnini, Mohammed Taous (2016)

Mathematica Bohemica

We study the capitulation of 2 -ideal classes of an infinite family of imaginary bicyclic biquadratic number fields consisting of fields 𝕜 = ( 2 p q , i ) , where i = - 1 and p - q 1 ( mod 4 ) are different primes. For each of the three quadratic extensions 𝕂 / 𝕜 inside the absolute genus field 𝕜 ( * ) of 𝕜 , we determine a fundamental system of units and then compute the capitulation kernel of 𝕂 / 𝕜 . The generators of the groups Am s ( 𝕜 / F ) and Am ( 𝕜 / F ) are also determined from which we deduce that 𝕜 ( * ) is smaller than the relative genus field ( 𝕜 / ( i ) ) * . Then we prove that each...

On the structure of the 2-Iwasawa module of some number fields of degree 16

Idriss Jerrari, Abdelmalek Azizi (2022)

Czechoslovak Mathematical Journal

Let K be an imaginary cyclic quartic number field whose 2-class group is of type ( 2 , 2 , 2 ) , i.e., isomorphic to / 2 × / 2 × / 2 . The aim of this paper is to determine the structure of the Iwasawa module of the genus field K ( * ) of K .

On the use of explicit bounds on residues of Dedekind zeta functions taking into account the behavior of small primes

Stéphane Louboutin (2005)

Journal de Théorie des Nombres de Bordeaux

Lately, explicit upper bounds on | L ( 1 , χ ) | (for primitive Dirichlet characters χ ) taking into account the behaviors of χ on a given finite set of primes have been obtained. This yields explicit upper bounds on residues of Dedekind zeta functions of abelian number fields taking into account the behavior of small primes, and it as been explained how such bounds yield improvements on lower bounds of relative class numbers of CM-fields whose maximal totally real subfields are abelian. We present here some other...

Currently displaying 21 – 26 of 26

Previous Page 2