Über verallgemeinerte Dedekindsche Summen, Strahlklasseninvarianten reell-quadratischer Zahlkörper und die Klassenzahl des q-ten Kreisteilungskörpers.
Soient un corps abélien réel, un nombre premier, premier au degré de . Cet article utilise une conjecture de J. Coates et S. Lichtenbaum (ou une conjecture analogue pour , qu’il énonce et discute) pour étudier, pour chaque étage de la -extension de , la décomposition de la -partie de la formule analytique du nombre de classes suivant l’action du groupe de Galois de . Pour cela, est établie une formule sur la -composante (-caractère -adique irréductible) du quotient du groupe des unités...
Soient un corps abélien réel, un nombre premier, premier à et le quotient du groupe des unités semi-locales de par celui des unités cyclotomiques : on donne la structure galoisienne de la limite projective des , généralisant un théorème d’Iwasawa, et on applique ceci à la comparaison de conjecture classique sur la limite projective des groupes de classes.
Nous étudions les extensions abéliennes d’un corps quadratique imaginaire et discutons les analogues des théorèmes de Mazur et Wiles.
Soit une extension cyclique -primaire d’un corps de nombres . On suppose que est métabélienne sur un sous-corps d’indice dans , pour un étranger à ; on note son groupe de Galois de un relèvement dans du quotient Gal. On étudie la structure galoisienne des groupes de -classes de et on s’intéresse en particulier à leurs -composantes, lorsque parcourt le groupe des caractères -adiques irréductibles de . Le choix d’un générateur convenable dans l’idéal d’augmentation...