Étude du l-groupe des classes des extensions cycliques de degré l
We determine all cyclic extensions of prime degree over a -regular number field containing the -roots of unity which are also -regular. We classify these extensions according to the ramification index of the wild place in and to the -valuation of the relative class number (which is the quotient of the ordinary class numbers of and ). We study the case where the is odd prime, since the even case was studien by R. Berger. Our genus theory methods rely essentially on G. Gras...
Dans cet article, nous déterminons et classifions toutes les extensions cycliques de degré de corps de nombres -rationnels contenant une racine primitive -ième de l’unité. (Cette notion est plus générale que celle de -régularité étudiée dans un travail antérieur).
Nous montrons des raffinements -adique et “caractères par caractères” de la formule d’indice de Sinnott pour un corps abélien totalement réel. De tels raffinements ont aussi été obtenus par Kuz’min avec des méthodes différentes (voir les commentaires en introduction). Nous donnons des applications à la théorie d’Iwasawa des unités semi- locales et cyclotomiques.