Über den p-Rang der Klassengruppe des Kompositums algebraischer Zahlkörper.
Soit une courbe elliptique avec multiplication complexe, définie sur un corps de nombres . Soit un nombre premier. En ajoutant certains points de -torsion de à , on construit une -extension de . On associe à un groupe de Selmer.Pour une -extension galoisienne de , Wingberg a montré, sous les conjectures arithmétiques usuelles, un analogue de la formule de Riemann-Hurwitz pour le corang du groupe de Selmer en haut de la tour. Nous donnons une nouvelle preuve de ce résultat dans l’esprit...
Soient un corps abélien réel, un nombre premier, premier au degré de . Cet article utilise une conjecture de J. Coates et S. Lichtenbaum (ou une conjecture analogue pour , qu’il énonce et discute) pour étudier, pour chaque étage de la -extension de , la décomposition de la -partie de la formule analytique du nombre de classes suivant l’action du groupe de Galois de . Pour cela, est établie une formule sur la -composante (-caractère -adique irréductible) du quotient du groupe des unités...
Nous étudions les extensions abéliennes d’un corps quadratique imaginaire et discutons les analogues des théorèmes de Mazur et Wiles.