Factorization problems in semigroups.
On construit une fonction -adique arithmétique associée à une courbe elliptique ayant bonne réduction en , fonction à valeurs dans son module de Dieudonné en . On donne le lien conjectural avec les fonctions de Mazur et Swinnerton-Dyuer d’une part et les éléments de Beilinson-Kato d’autre part et on énonce une conjecture principale". On calcule aussi les termes dominants de cette fonction -adique aux entiers en liaison avec les conjectures -adiques du tupe Birch et Swinnerton-Dyer et Bloch-Kato....
On associe à toute extension finie d’un corps de caractéristique 2 une forme quadratique non dégénérée de rang pair égal à où , dont on détermine les invariants. On applique ensuite cette étude à la recherche de polynômes dépendant de peu de paramètres permettant de définir des familles d’extensions de degré donné.
Nous montrons des raffinements -adique et “caractères par caractères” de la formule d’indice de Sinnott pour un corps abélien totalement réel. De tels raffinements ont aussi été obtenus par Kuz’min avec des méthodes différentes (voir les commentaires en introduction). Nous donnons des applications à la théorie d’Iwasawa des unités semi- locales et cyclotomiques.