Tamely ramified Hida theory
Let be the Jacobian of the modular curve associated with and the one associated with . We study as a Hecke and Galois-module. We relate a certain matrix of -adic periods to the infinitesimal deformation of the -operator.
Let be the Jacobian of the modular curve associated with and the one associated with . We study as a Hecke and Galois-module. We relate a certain matrix of -adic periods to the infinitesimal deformation of the -operator.
This paper contains an overview of the known cases of the Bloch-Kato conjecture. It does not attempt to overview the known cases of the Beilinson conjecture and also excludes the Birch and Swinnerton-Dyer point. The paper starts with a brief review of the formulation of the general conjecture. The final part gives a brief sketch of the proofs in the known cases.
Let G be a compact p-adic Lie group, with no element of order p, and having a closed normal subgroup H such that G/H is isomorphic to Zp. We prove the existence of a canonical Ore set S* of non-zero divisors in the Iwasawa algebra Λ(G) of G, which seems to be particularly relevant for arithmetic applications. Using localization with respect to S*, we are able to define a characteristic element for every finitely generated Λ(G)-module M which has the property that the quotient of M by its p-primary...
Let be an odd prime number and a finite abelian -group. We describe the unit group of (the completion of the localization at of ) as well as the kernel and cokernel of the integral logarithm , which appears in non-commutative Iwasawa theory.
1. Introduction. Let k be a totally real number field. Let p be a fixed prime number and ℤₚ the ring of all p-adic integers. We denote by λ=λₚ(k), μ=μₚ(k) and ν=νₚ(k) the Iwasawa invariants of the cyclotomic ℤₚ-extension of k for p (cf. [10]). Then Greenberg’s conjecture states that both λₚ(k) and μₚ(k) always vanish (cf. [8]). In other words, the order of the p-primary part of the ideal class group of kₙ remains bounded as n tends to infinity, where kₙ is the nth layer of . We know by the Ferrero-Washington...