On the quartic character of quadratic units.
We study the capitulation of -ideal classes of an infinite family of imaginary bicyclic biquadratic number fields consisting of fields , where and are different primes. For each of the three quadratic extensions inside the absolute genus field of , we determine a fundamental system of units and then compute the capitulation kernel of . The generators of the groups and are also determined from which we deduce that is smaller than the relative genus field . Then we prove that each...
A -adic version of Stark’s Conjecture at is attributed to J.-P. Serre and stated (faultily) in Tate’s book on the Conjecture. Building instead on our previous paper (and work of Rubin) on the complex abelian case, we give a new approach to such a conjecture for real ray-class extensions of totally real number fields. We study the coherence of our -adic conjecture and then formulate some integral refinements, both alone and in combination with its complex analogue. A ‘Weak Combined Refined’ version...
We prove that, for any unit in a real number field of degree , there exits only a finite number of n-tuples in which have a purely periodic expansion by the Jacobi-Perron algorithm. This generalizes the case of continued fractions for . For we give an explicit algorithm to compute all these pairs.
The investigation of quantitative aspects of non-unique factorizations in the ring of integers of an algebraic number field gives rise to combinatorial problems in the class group of this number field. In this paper we investigate the combinatorial problems related to the function 𝓟(H,𝓓,M)(x), counting elements whose sets of lengths have period 𝓓, for extreme choices of 𝓓. If the class group meets certain conditions, we obtain the value of an exponent in the asymptotic formula of this function...
We investigate infinite families of integral quadratic polynomials {fk (X)} k∈N and show that, for a fixed k ∈ N and arbitrary X ∈ N, the period length of the simple continued fraction expansion of √fk (X) is constant. Furthermore, we show that the period lengths of √fk (X) go to infinity with k. For each member of the families involved, we show how to determine, in an easy fashion, the fundamental unit of the underlying quadratic field. We also demonstrate how the simple continued fraction ex-...