Sur un problème de capitulation du corps dont le -groupe de classes est élémentaire
Soient des nombres premiers tels que, et , où . Soient , , , le 2-corps de classes de Hilbert de et le corps de genres de . La 2-partie du groupe de classes de est de type , par suite contient sept extensions quadratiques non ramifiées et sept extensions biquadratiques non ramifiées . Dans ce papier on s’intéresse à déterminer ces quatorze extensions, le groupe et à étudier la capitulation des 2-classes d’idéaux de dans ces extensions.