Structures galoisiennes et courbes elliptiques
Étant donné un corps de nombres et un nombre premier , soit le sous-module de -torsion du groupe de Galois de la -extension abélienne -ramifiée maximale de . On se propose d’étudier la structure de module galoisien de . Si vérifie la conjecture de Leopoldt, contient un sous-module formé des racines -primaires de l’unité semi-locales quotientées par les racines -primaires de l’unité globales, et le quotient de par ce sous-module peut s’interpréter de deux façons : soit comme les...
On présente deux résultats nouveaux concernant la racine carrée de la codifférente d’une extension faiblement ramifiée de . Le premier, relatif à sa structure galoisienne, s’inscrit dans la stratégie classique développée notamment par Fröhlich et Taylor. Le second, qui concerne le réseau entier unimodulaire associé, est prouvé à l’aide de calculs numériques portant sur des exemples intéressants.
Soit un corps de nombres galoisien sur de degré impair, et soit son groupe de Galois. Alors il existe un unique idéal fractionnaire de qui soit unimodulaire pour la forme quadratique . Cet idéal est la racine carrée de la codifférente, et est noté . Dans cet article, on décrit un représentant explicite de la classe de -isométrie du couple , ne dépendant que des nombres premiers sauvagement ramifiés dans , et dont le degré de ramification est différent de .
On dit qu’un corps est de Hilbert-Speiser en un premier si toute extension modérée abélienne finie de degré admet une base normale entière. On dit qu’un corps est de Hilbert-Speiser s’il est de Hilbert-Speiser pour tout premier . Il est bien connu que est un tel corps. Dans un article [3] de 1998, Greither, Replogle, Rubin et Srivastav ont montré que était le seul corps de Hilbert-Speiser. On donne ici une condition nécessaire et suffisante pour qu’un corps soit de Hilbert-Speiser en ....