The search session has expired. Please query the service again.
Displaying 261 –
280 of
367
We give a simple proof of the Siegel-Tatuzawa theorem according to which the residues at s = 1 of the Dedekind zeta functions of quadratic number fields are effectively not too small, with at most one exceptional quadratic field. We then give a simple proof of the Brauer-Siegel theorem for normal number fields which gives the asymptotics for the logarithm of the product of the class number and the regulator of number fields.
We introduce a new ideal of the p-adic Galois group-ring associated to a real abelian field and a related ideal for imaginary abelian fields, Both result from an equivariant, Kummer-type pairing applied to Stark units in a -tower of abelian fields, and is linked by explicit reciprocity to a third ideal studied more generally in [D. Solomon, Acta Arith. 143 (2010)]. This leads to a new and unifying framework for the Iwasawa theory of such fields including a real analogue of Stickelberger’s Theorem,...
Stark’s conjectures connect special units in number fields with special values of -functions attached to these fields. We consider the fundamental equality of Stark’s refined conjecture for the case of an abelian Galois group, and prove it when this group has exponent . For biquadratic extensions and most others, we prove more, establishing the conjecture in full.
Currently displaying 261 –
280 of
367